Leta i den här bloggen

måndag 28 oktober 2013

D-penicillamiini

http://www.ncbi.nlm.nih.gov/pubmed/15661498 
Koska  D-penisillamiin voi estää kollageenin poikkisidosten muodostusta, sillä voisi olla merkitystä myös kelaattina Alz- taudissa estämässä  hankalia fibrillimuodostumia.  Löytyyhän tästä  artikkelikin: 


Eur J Pharm Biopharm. 2005 Feb;59(2):263-72. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases.

Source

Department of Pharmaceutical Sciences, Center for Pharmaceutical Science and Technology, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.

Abstract

Metal ions accumulate in the brain with aging and in several neurodegenerative diseases. Aside from the copper storage disease, Wilson's disease, recent attention has focused on the accumulation of zinc, copper and iron in the Alzheimer's disease (AD) brain and the accumulation of iron in Parkinson's disease. In particular, the parenchymal deposition of beta-amyloid (Abeta) and its interaction with metal ions has been postulated to play a role in the progression of AD. Thus, the strategy of lowering brain metal ions and targeting the interaction of Abeta peptide and metal ions through the administration of chelators has merit. Our recent finding that nanoparticle delivery systems can cross the blood-brain barrier has led us to investigate whether chelators delivered conjugated to nanoparticles could act to reverse metal ion induced protein precipitation. In the present studies, the Cu (I) chelator D-penicillamine was covalently conjugated to nanoparticles via a disulfide bond or a thioether bond. Nanoparticle-chelator conjugates were stable between pH 6-8 in aqueous suspension if stored at 4 degrees C, and did not aggregate when challenged with salts and serum. Release of D-penicillamine from the nanoparticles was achieved using reducing agents such as dithiothreitol (as a model for glutathione). Nanoparticles treated only under reducing conditions that released the conjugated D-penicillamine were able to effectively resolubilize copper-Abeta (1-42) aggregates. These results indicate that nanoparticles have potential to deliver D-penicillamine to the brain for the prevention of Abeta (1-42) accumulation, as well as to reduce metal ion accumulation in other CNS diseases.

söndag 27 oktober 2013

Fysostigmiini

http://en.wikipedia.org/wiki/Physostigmine

Kuten tiedetään kolinerginen järjestelmä toimii eräänlaisena hermo ratojen johtokyvyn perusauraajana   siten että sen  vaihtovirtamainen  nopea asetylkoliini-- asetylkoliiniesteraasi- järjestelmä  normaalina tuottaa ihmisen järkevää kognitiota ja hyvää suorituskykyä.
 Jos  tuo hyvä järkevyys halutaan   täsmällisesti kolaroida pois- (kuitenkaan tappamatta  väestöä kuten tavallisilla hermokaasuilla  on tapana ), ja esim asetylkoliinin tehopitoisuutta vähennetään-   niin  vaikutus on typertävä, ihminen alkaa  töppäillä, hypistellä, nyppiä ja esim.  kiskoa vaatteitaan pois ja on toiminnaltaan deliriöösi, ajantajun kadottanut  eikä erota  vahvoista  hallusinaatioistaan   objektiivisia faktoja. - Sotilaille tuollainen  töppöily olisi  hyvin  "incapasitating", toimintakyvyn tehon äkkikatkaisija.  BZ kemiallinen ase  kuten sen sukuinen Agentti 15 ovat sitä sorttia.Tämän vuoden alkupuolella  huhuttiin että jotain  Agentti 15 kaltaista olisi  Syyriassakin olut, mutta  ilmeisesti  oli kyse pahempia tarkoittaneista  aineista.

Tuollaisen töppöilyyn on fysostigmiini vastalääke  . Sen yksi  nimi onkin "Antilirium " ( anti -delirium)  . Fysotigmiinillä on itsellään   yliannostusoreensa, joten  sen  antorajat ovat kapeat. Fysostigmiini saa kohotettua asetylkoliinin vaikuttavaa pitoisuutta estämällä  asetylkoliinia pilkkoutumasta.

NATO koodin BZ  aineille fysostigmiini on  aivan  spesifinen vasta-aine. sillä BZ aineet   ( asetylkoliinin kompetitiivisina estäjinä   postsynaptisissa ja postjunktionaalisissa muskariinireseptorikohdissa sekä aivoissa)  vähentävat asetylkoliinin efektiivistä  pitoisuutta noissa reseptorikohdissa.

Fysostigmiinin vaikutus asetylkoliiniesteraasiin on reversibeli, ohimenevä, palautuva, ( kun taas  organofosfaatti-hermokaasut  lamaavat  entsyymin pysyvästi). Fysostigmiini vahvistaa asetylkoliinin pitoisuutta sekä nikotiinireseptoreissa että muskariiniresptoreissa,  joten se vaikuttaa  aivoissakin lähimuistin ja    lihasfunktioissa kyseessä olevan hetken  tahdonalaisen toiminnan   paranemaa. 

 Sitaatti  Wikipediasta:

Clinical uses

Physostigmine is used to treat glaucoma, Alzheimer's disease and delayed gastric emptying. It has been shown to improve short term memory (Krus et al. 1968). Recently, it has begun to be used in the treatment of orthostatic hypotension.
Because it is a tertiary amine (and thus does not hydrogen bond, making it more hydrophobic), it can cross the blood–brain barrier, and physostigmine salicylate is used to treat the central nervous system effects of atropine, scopolamine and other anticholinergic drug overdoses.
Physostigmine is the antidote of choice for Datura stramonium poisoning. It is also an antidote for Atropa belladonna poisoning, the same as for atropine.[4] It has been also used as an antidote for poisoning with GHB as well,[5] but is poorly effective and often causes additional toxicity, so is not a recommended treatment.[6]

Bioactivity

Physostigmine functions as an acetylcholinesterase inhibitor. Its mechanism is to prevent the hydrolysis of acetylcholine by acetylcholinesterase at the transmitted sites of acetylcholine. This inhibition enhances the effect of acetylcholine, making it useful for the treatment of cholinergic disorders and myasthenia gravis. More recently, physostigmine has been used to improve the memory of Alzheimer’s patients due to its potent anticholinesterase activity. However, the drug form of physostigmine, physostigmine salicylate, has poor bioavailability.
Physostigmine also has a miotic function, causing pupillary constriction. It is useful in treating mydriasis. Physostigmine also increases outflow of the aqueous humor in the eye, making it useful in the treatment of glaucoma.
Recently, physostigmine has been proposed as antidote for intoxication with gamma hydroxybutyrate (GHB, a potent sedative-hypnotic agent that can cause loss of consciousness, loss of muscle control, and death). Physostigmine may treat GHB by producing a nonspecific state of arousal. However, there is not enough scientific evidence to prove physostigmine properly treats GHB toxicity.
Physostigmine also has other proposed uses: it could reverse undesired side effects of benzodiazepines such as diazepam, alleviating anxiety and tension. Another proposed use of physostigmine is to reverse the effects of barbiturates (any of a group of barbituric acids derived for use as sedatives or hypnotics).

Side effects

An overdose can cause cholinergic syndrome.
Other side effects may include nausea, vomiting, diarrhea, anorexia, dizziness, headache, stomach pain, sweating, dyspepsia and seizures.[7]

Metyltioniini tutkimuksissa

http://en.wikipedia.org/wiki/Methylthioninium_chloride
Metyltioniini eli metyleenisini on redusoiva ( pelkistävä) aine, jota käytetään terapeuttisesti joissain methemoglobinemiamuodoissa palauttamassa hemoglobiinin Ferrirautaa Hb-Fe+++  ferro-muotoon Hb-Fe++.
 On havaittu että  metyleenisini toimii myös  Tau-proteiinin aggrekaation estäjänä, jolloin  se on kiinnostava aine  mahdollisena  Alzheimerin taudin lääkekirjoon kuuluvana  uutena jäsenenä. Mahdollista edullista vaikutusta sillä lie myös Parkinsonin tautiin. Asiaa tutkitaan.

SITAATTI Wikipediasta:

Methylthioninium chloride

Methylthioninium chloride
Systematic (IUPAC) name
3,7-bis(Dimethylamino)-phenothiazin-5-ium chloride
Clinical data
Pregnancy cat.  ?
Legal status investigational
Routes oral
Identifiers
CAS number 61-73-4 Yes
ATC code None
PubChem CID 6099
ChemSpider 5874 Yes
ChEBI CHEBI:6872 Yes
ChEMBL CHEMBL405110 Yes
Chemical data
Formula C16H18ClN3S 
Mol. mass 319.85 g/mol
 Yes (what is this?)  (verify)
Methylthioninium chloride (INN, or methylene blue, proposed trade name Rember) is an investigational drug being developed by the University of Aberdeen and TauRx Therapeutics that has been shown in early clinical trials to be an inhibitor of Tau protein aggregation.[1][2] The drug is of potential interest for the treatment of patients with Alzheimer's disease. Its development appears to be related to claim 7 of US 6953794 Inhibition of Tau-Tau Association. TauRx Therapeutics has suggested that the mechanism by which methylene blue might delay or reverse neurodegeneration in Alzheimer's disease is as an inhibitor of Tau protein aggregation. While methylene blue arguably has an effect on Tau aggregation, it also has an effect on mitochondrial function which is likely to play an important role. In vitro studies suggest that methylene blue might be an effective remedy for both Alzheimer's and Parkinson's disease by enhancing key mitochondrial biochemical pathways. It can disinhibit and increase complex IV, whose inhibition correlates with Alzheimer's disease. [3]
...

torsdag 10 oktober 2013

onsdag 2 oktober 2013

Astrosyytin osuudesta aivohalvauksessa ,aivojen plastisuudessa ja neurogeneesissä. Uusi väitöskirja 2013

https://gupea.ub.gu.se/handle/2077/32390

Keywords: astrocytes
reactive gliosis
stroke
neurotrauma
brain plasticity
intermediate filaments
nanofilaments
GFAP
vimentin
neurogenesis
neural stem/progenitor cell
single-cell gene expression profiling
Abstract: Astrocytes, one of the most abundant and heterogeneous cell types in the central nervous system, fulfill many important roles in the healthy and injured brain. This thesis investigates the role of astrocytes in the neurogenic niche and the astrocyte response in stroke and neurotrauma. Using gene expression profiling on a global level as well as on a single-cell level and applying it to disease and transgenic models in vivo and in vitro, we have addressed molecular bases of these responses and molecular signatures of the subpopulations of astrocytes. Following injury, stroke or neurodegenerative diseases, astrocytes upregulate intermediate filament (nanofilament) proteins glial fibrillary acidic protein and vimentin along with many other genes, in a process referred to as reactive gliosis. Results presented in this thesis show that mice with attenuated reactive gliosis developed larger infarct volumes following experimental brain ischemia, compared to controls, implying that reactive gliosis is neuroprotective. Using astrocyte and neurosphere co-cultures, we show that astrocytes inhibit neuronal differentiation through cell-cell contact via the Notch signaling pathway and that intermediate filaments are involved in this process. We found that even a very limited focal trauma triggers a distinct brain plasticity response both in the injured and contralesional hemisphere and that this response at least partly depends on activation of astrocytes. Finally, using single-cell gene expression profiling in vitro and in vivo, we show that the astrocyte population is highly heterogeneous, we attempt to define astrocyte subpopulations in molecular terms, and we demonstrate that astrocyte subpopulations respond differentially to a subtle neurotrauma both in the injured and contralesional hemisphere.