Ihmisen keho tarvitsee rakenteellisen aminotypen ja siihen kuuluvan aineenvaihdunnan lisäksi paljon funktionaalisia typpeä siältäviä ja käsitteleviä proteiineja. Tässä keskityn NO- molekyyliin , typpioksiiin, jota keho tarvitsee myös. ennenkin olen kirjoittanut tetrahydrobiopteriinista, joten tässä kertaan asiaa. Tgerahydrobiopteriini on smantapainen kuin foolihappo, muta eroaa siitä, että sitä pystyy keho valmistamaan itse, jos aineenvaihdunta on optimaali. Foolihapon saanti kuitenkin tukee sen muodostumsita ja funktiota. MAhdollsiesti se kuitenkin voi olla myös vitamiini joissain tilanteissa. Ainakin pitää tunnistaa, milloin tetrahydrobiopteriinin muodostuminen kehosa kompromittoituu ja siitä tulee funktionaalinen puutos.
Tetrahydrobiopterin in nitric oxide synthase
- PMID: 23441062
- DOI: 10.1002/iub.1136
Typpioksidisyntaasi (NOS) on kriittinen entsyymi välittäjäainemolekyylin NO muodostumisessa L-arginiiniaminohaposta. NOS-entsyymi vaatii kofaktoriksi tetrahydrobiopteriinia typpioksidimolekyylin muodostamiseksi. NO-syntaasi on on yksi harvoista entsyymeistä , joka käyttää juuri tätä kofaktoria . Sen lisäksi tetrahydrobiopteriinin merkitys NOS-entyymin katalyyttisessä mekanismissakin poikkeaa muiden entsyymien katalyyttisistä mekanismeista. NOS-entsyymin katalyyttisen syklin aikana tetrahydrobiopteriini muodostaa radikaalilajinsa, joka sitten taas redusoituu palauttaen sen tehokkaasti ennalleen jokaisen NO-synteesisyklin jälkeen.
Tässä katsauksessa tehdään yhteenvetoa siitä tiedosta, mitä meillä nyukyään on tetrahydrobiopteriinin roolista NOS-entsyymien rakenteessa, fuktiossa ja katalyyttisessä mekanismissa.
Nitric oxide synthase (NOS) is a critical enzyme for the production of the messenger molecule nitric oxide (NO) from L-arginine. NOS enzymes require tetrahydrobiopterin as a cofactor for NO synthesis. Besides being one of the few enzymes to use this cofactor, the role of tetrahydrobiopterin in NOS catalytic mechanism is different from other enzymes: during the catalytic cycle of NOS, tetrahydrobiopterin forms a radical species that is again reduced, thus effectively regenerating after each NO synthesis cycle.
In this review, we summarize our current knowledge about the role of tetrahydrobiopterin in the structure, function, and catalytic mechanism of NOS enzymes. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
NO-syntaasit, typpioksidin syntetisoijat, ovat entsyymeitä, jotka katalysoivat typpioksidin NO muodsotusta arginiini (arg, R) -nimisestä aminohaposta . NO on tärkeä signaloiva molekyyli , joka osallistuu lukuisiin biologisiin prosesseihin kuten hermoimpulssien välittämiseen, verisuonten laajenemiseen ja immuunivasteeseen. NOS-entsyymiproteiinit ovat aktiiveja kun ne ovat homodimeerimuodossa. Yksi monomeeri käsittää kaksi hyvin selvästi määriteltävää domeenia. Toinen on N-terminaalinen ( aminoterminaali) alue. Se on oxygenaasidomeeni, sitoo hemiä ja L-arginiinia sekä tetrahydrobiopteriinia (H4B, toinen merkintä: BH4). Toinen domeeni on C-terminaalinen (karboksyyliterminaali) alue. Se on reduktaasidomeeni ja sitoo flaviiniadeniinidinukleotidia (FAD) flaviinimononukleotidia (FMN) ja nikotinamidiadeniinidinukleotidia (NADPH) ( jotka ovat B-vitamiineista kehossa muodostettuja koentsyymeitä), ja toimittaa elektoroneja NADPH:sta käsin oxygenaasidomeenilleen. Molemmat domeenit voivat ilmentyä erikseen ja ne ovat myös puhdistettavissa erikseen ja niiden ligandien sitomistapa ja reaktiivisuus on selvitetty. Oxygenaasi ja reduktaasidomeenien välissä on lyhyt sekvenssi (30-40 aminohapon jakso) ja se antaa sitoutumiskohdan kalmoduliiniproteiinille (CaM). KUVA allaolevassa linkissä Fig.1.
Nitric oxide synthases (NOS, EC 1.14.1.39) are enzymes that catalyze the formation of nitric oxide (NO) from L-arginine. NO is an important signaling molecule that participates in a number of biological processes, including neurotransmission, vasodilation, and immune response (1). NOS proteins are active as homodimers, and each monomer consists of two well-defined domains. The N-terminal oxygenase domain binds heme, L-arginine, and (6R-)5,6,7,8-tetrahydrobiopterin (H4B). The C-terminal reductase domain binds flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) and provides electrons to the oxygenase domain from NADPH. Both domains can be expressed and purified separately, and conserve their ligand binding and reactivity. Between the oxygenase and reductase domains, a short sequence (30–40 aminoacids) provides a binding site for calmodulin (CaM) (Fig. 1).
The oxygenase domain of NOS catalyzes the oxidation of L-arginine to L-citrulline and NO in two sequential oxidation steps (Scheme 1). In the first step, L-arginine is hydroxylated to make Nω-hydroxy-L-arginine (NOHA) in a process that requires one molecule of NADPH and one molecule of oxygen per mol of L-arginine reacted. In the second step, NOHA is oxidized to L-citrulline and NO and 1 molecule of oxygen and 0.5 molecules of NADPH are required.
The three mammalian isoforms of NOS show high sequence homology but greatly differ in their localization and regulation. The inducible isoform (iNOS) has a high affinity for CaM and is constitutively active; this isoform is mainly regulated at the transcriptional level. Endothelial (eNOS) and neuronal (nNOS) enzymes are constitutively expressed and are reversibly activated by calcium through the binding of Ca2+-containing CaM. Related proteins have been discovered in bacteria but consisting of only the oxygenase domain (2). The bacterial NOS enzymes also contain heme but are less stringent in their pterin requirements and can often bind tetrahydrofolate (H4F) and H4B with similar affinity. Due to the absence of a connected reductase domain, they must receive electrons from other electron transfer proteins (2-4). The recently discovered NOS from Sorangium cellulosum is a notable exception to this rule (5).
The general biochemistry of NOS enzymes has been extensively reviewed from the biophysical (6-9) and clinical perspective (10). Reviews on H4B biochemistry have also treated NOS (11, 12). In this review, we will focus on the function of tetrahydrobiopterin in NOS enzymes.
H4B Requirement for NOS Catalysis
Early studies of NOS enzymes identified H4B as a necessary cofactor for NO synthesis (13-15) with a stoichiometry of one molecule of H4B per subunit (16). Nevertheless, the function of H4B was controversial, with a variety of suggested roles. A redox cycle involving H4B and H2B, as in aromatic amino acid hydroxylases was considered, but this would require one H4B molecule per cycle, in contradiction with experimental data (15, 17). Strong evidence indicated that H4B enhanced dimer formation (18, 19). However, the evidences of some redox effect did slowly accumulate. Single turnover experiments indicated that the stability of the heme-oxy complex was dependent on H4B presence, and H4B was required for the reaction to advance past the formation of a ferrous dioxygen/ferric superoxide complex (20). Other results indicated that H4B analogs were able to catalyze L-arginine hydroxylation to a variable extent, but all were reduced forms (21). It was even unclear if H4B was required for the NOHA oxidation step (22). The detection of a H4B radical (23-26) and the coupling of this radical formation with product formation (26) finally lead to the currently accepted notion—the decay of the ferrous dioxygen/ferric superoxide complex is linked to the formation of a H4B radical species (8, 9, 27, 28).
H4B Binding in NOS
Pterin Binding Affinity of NOS
NOS enzymes bind H4B with high affinity. The presence of significant amounts of H4B in the enzyme after purification evinces the tight binding of the cofactor by the native protein (13-15). The binding of L-arginine and H4B shows a synergistic effect: prior binding of L-arginine increases the binding affinity for H4B and vice versa (21, 29, 30). Mammalian NOS enzymes bind H4B with affinities in the nM range. H4B is usually the preferred substrate over H2B, except for the eNOS enzyme (31). This fact has important implications for human pathology (10, 12, 31). Bacterial NOS enzymes operate in a wide range of KD values, and sometimes bind H4F with higher affinity (2, 32, 33). It should be noted that although many other pterins can bind to NOS (see (11) and references therein), only a few H4B analogs can support NO synthesis (21). The binding affinities for several pterins are shown in Table 1.
Pterin Binding Pocket in Mammalian and Bacterial NOS
Structures of the oxygenase domains for the three eukaryotic NOS isoforms (34-36) and several bacterial NOS proteins (37-39) have been reported. The alignment of the sequences for these NOS proteins indicates the notable similarity between mammalian and bacterial NOS enzymes (Fig. 2). The presence of additional elements in the N-termini of the mammalian proteins can be also noted; these motifs are involved in dimer formation and pterin binding (Figs. 2 and 3). The available structures clearly show that the absence of this N-termini allows bacterial NOS proteins to bind larger pterins (Fig. 3). The conservation of the H4B binding environments in eNOS, iNOS, and nNOS is remarkable. Moreover, the bacterial NOS proteins also share many similarities in the pterin binding region. H4B is bound to NOS by an extensive network of hydrogen bonds, with a highly conserved pattern for the three NOS isoforms (34-36) (Fig. 3). Most hydrogen bonds are contributed by the protein but there is also an interaction with the heme group. Several hydrogen bonds are contributed by the protein backbone and the side chain of a conserved Arg residue (Arg375 in mouse iNOS). A conserved tryptophan residue also provides stabilization through a π-stacking interaction (Trp457 in mouse iNOS). Notably both Arg and Trp residues are conserved in mammalian and bacterial NOS proteins. The pterin binding pocket is placed in the oxygenase dimer interface. This location clearly suggest a relationship with the role of H4B binding on stabilization of the NOS dimer.
Figure 2