- ( on mahdollista nostaa biopteriinin pitoisuutta supplementtina:Tämä artikkeli sinänsä koskee malariatutkimuksia. Tietysti foolihapon käyttö tukee biopteriinin metaboliaa ihmisellä. Tässä on hiirikoetuloksia, miten biopteriinin saa myös kudoksissa nousemaan. Dopamiinisynteesi vaatii biopteriinin muodostusta kehossa. "The continuous infusion of sepiapterin (a BH4 precursor) and citrulline (an arginine precursor) raised the concentrations of BH4 and arginine in both blood and tissue compartments. The restoration of systemic BH4 and arginine availability in infected mice produced only a minor improvement in whole blood nitrite concentrations, a biomarker of NO synthesis, and failed to prevent the onset of severe disease symptoms. However, sepiapterin and citrulline infusion reduced the ratio of phenylalanine to tyrosine in plasma, aortic tissue, and brain tissue. In summary, BH4 depletion in P. berghei infection may compromise both nitric oxide synthesis and phenylalanine metabolism; however, these findings require further investigation in human patients with severe malaria.")
- https://www.ncbi.nlm.nih.gov/pubmed/27641435
- TH (11p15.5)
- Also known as
- TYH; DYT14; DYT5b
- Summary
- The protein encoded by this gene is involved in the conversion of tyrosine to dopamine. It is the rate-limiting enzyme in the synthesis of catecholamines, hence plays a key role in the physiology of adrenergic neurons. Mutations in this gene have been associated with autosomal recessive Segawa syndrome. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jul 2008]
- Expression
- Restricted expression toward adrenal (RPKM 42.8) See more
- Preferred Names
- tyrosine 3-monooxygenase
- Names
- dystonia 14
- tyrosine 3-hydroxylase
See identical proteins and their annotated locations for NP_000351.2
Status: REVIEWED- Description
- Transcript Variant: This variant (2) uses a different donor splice site at the first coding exon and is missing an adjacent in-frame coding exon compared to transcript variant 1, resulting in an isoform (b) missing a 31 aa segment compared to isoform a.
- Source sequence(s)
- Conserved Domains (4) summary
-
- TIGR01269
Location:38 → 494 - Tyr_3_monoox; tyrosine 3-monooxygenase, tetrameric
- cd04930
Location:38 → 159 - ACT_TH; ACT domain of the nonheme iron-dependent aromatic amino acid hydroxylase, tyrosine hydroxylases (TH)
- pfam00351
Location:164 → 494 - Biopterin_H; Biopterin-dependent aromatic amino acid hydroxylase
- pfam12549
Location:2 → 26 - TOH_N; Tyrosine hydroxylase N terminal
- TIGR01269
torsdag 11 juli 2019
Tyrosiinihydroksylaasigeeni
tisdag 2 juli 2019
Retina ja sumoylaatio
https://nebraska.pure.elsevier.com/en/publications/sumoylation-regulation-of-retina-development-and-functions
Zhang, L., & Li, D. W. C. (2016). SUMOylation regulation of retina development and functions. Current Molecular Medicine, 16(9), 803-808. https://doi.org/10.2174/1566524016666161128115453
Zhang, L., & Li, D. W. C. (2016). SUMOylation regulation of retina development and functions. Current Molecular Medicine, 16(9), 803-808. https://doi.org/10.2174/1566524016666161128115453
The
structure and developmental mechanisms of vertebrate retina are highly
conserved. One of the most distinctive events during retinogenesis is
the temporally and spatially generation of seven types of retinal cells
from the multipotent retinal progenitor cells. The importance and
prevalence of SUMOylation in regulation of this process through
modulation of gene expression and protein function diversity have been
increasingly appreciated.
Here, we review the biological significance of SUMOylation in retina development, examine how SUMOylation balances the proliferation and cell cycle exit of retinal progenitor cells, and finally discuss the molecular mechanisms mediating the specification of different retina neurons and photoreceptors through modulation of various transcription factors
The potential role of SUMOylation in normal retina function is illustrated by the abundant expression of key components of SUMOylation machinery in mouse retina, and is also exemplified by the highly conserved SUMOylation site on neurotransmission receptors in ganglion cells.
Here, we review the biological significance of SUMOylation in retina development, examine how SUMOylation balances the proliferation and cell cycle exit of retinal progenitor cells, and finally discuss the molecular mechanisms mediating the specification of different retina neurons and photoreceptors through modulation of various transcription factors
The potential role of SUMOylation in normal retina function is illustrated by the abundant expression of key components of SUMOylation machinery in mouse retina, and is also exemplified by the highly conserved SUMOylation site on neurotransmission receptors in ganglion cells.
KAR ja GlyR , SENP1 ja PKC-sumoylaatiosta riippuva säätelytie tärkeä neuronin ärtyvyydelle
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199113/
Nat Commun. 2014 Sep 19; 5: 4980.
Published online 2014 Sep 19. doi: 10.1038/ncomms5980
PMCID: PMC4199113
PMID: 25236484
Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation
Hao Sun,1,* Li Lu,1,* Yong Zuo,1,* Yan Wang,1 Yingfu Jiao,1 Wei-Zheng Zeng,1 Chao Huang,2 Michael X. Zhu,3 Gerald W. Zamponi,4 Tong Zhou,5 Tian-Le Xu,1 Jinke Cheng,1 and Yong Lia,1
Abstract
Surface
expression and regulated endocytosis of glycine receptors (GlyRs) play a
critical function in balancing neuronal excitability.
SUMOylation (SUMO
modification) is of critical importance for maintaining neuronal
function in the central nervous system.
Here we show that activation of
kainate receptors (KARs) causes GlyR endocytosis in a calcium- and
protein kinase C (PKC)-dependent manner, leading to reduced
GlyR-mediated synaptic activity in cultured spinal cord neurons and the
superficial dorsal horn of rat spinal cord slices.
This effect requires
SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of
PKC, indicating that the crosstalk between KARs and GlyRs relies on the
SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is
involved in the kainate-induced GlyR endocytosis and thus plays an
important role in the anti-homeostatic regulation between excitatory and
inhibitory ligand-gated ion channels.
Altogether, we have identified a
SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may
have important physiological implications for proper neuronal
excitability.
Taken together, these findings support the mechanism by which SENP1 regulates kainate-induced GlyR endocytosis via changing the SUMOylation status and activity of PKC.
Taken together, these findings support the mechanism by which SENP1 regulates kainate-induced GlyR endocytosis via changing the SUMOylation status and activity of PKC.
Etiketter:
GLyR endosytoosi,
KAR ja GLyR,
PKC- sumoylaatio,
SENP1- desumoylaasi
Neuronin sumoylaatio ja desumoylaatiotasapaino on tärkeä neuronin funktiolle
https://www.ncbi.nlm.nih.gov/pubmed/309049
Sumoylaatio on palautuva (reversible) posttranslationaalinen modifikaatio (PTM), joka on välttämätön neuronaalisen funktion modulaatiossa, johon kuuluu hermonvälittäjäaineiden vapautuminen ja synaptinen muovautuvuus. Tiukasti säätynyt tasapaino sumoylaatio- ja desumoylaatioprosessien kesken on kriittinen aivojen toiminnalle ja tasapainon rikkoutumaa on assosioitu useisiin neurologisiin häiriöihin.Tätä sumoylaatio/desumoylaatiotasapainoa hallinnoi yksittäinen SUMO:a konjugoiva entsyymi Ubc9 ja joukko deSUMOylaaseja joita sanotaan sentriinispesifisiksi proteaaseiksi, SENP.
Aiemmin työryhmä jo osoitti, että tyypin 5 metabolisten Glu-reseptorien aktivaatio liipaisee esiin ohimenevän Ubc9- esiintymän dendriittihaarakkeissa, mikä johtaa nopeaan nousuun synaptisessa SUMOyloitumisessa. Kuitenkaan ei vielä oltu selvitetty lisääntynyttä synaptista sumoylaatiota tasapainottavaa mekanismia, joten tutkijaryhmä alkoi selvittää SENP1- entsyymin diffuusio.ominaisuuksia käyttämällä kombinoituja biokemiallisia lähestymistapoja ja yksittäisten hippokampihaarakkeiden valovaikutukseen perustuvia menetelmiä (photobleaching/ photoconversion). He osoittivat, että mGlu5R-aktivaatio johti ajasta riippuvaan laskuun SENP1:n poistumistahdissa yksittäisestä hippokampihaarakkeesta. Aiheutunut SENP1:n postsynaptinen kertymä palautti alkuperäistasoihin synaptisen sumoylaation. Kaiken kaikkiaan tutkijoiden löydöt paljastivat, että mGluR-järjestelmä on sentraalinen aktiviteetista riippuva mekanismi, joka pitää yllä sumoylaation homeostaasia imettäväissynapsissa.
Sumoylaatio on palautuva (reversible) posttranslationaalinen modifikaatio (PTM), joka on välttämätön neuronaalisen funktion modulaatiossa, johon kuuluu hermonvälittäjäaineiden vapautuminen ja synaptinen muovautuvuus. Tiukasti säätynyt tasapaino sumoylaatio- ja desumoylaatioprosessien kesken on kriittinen aivojen toiminnalle ja tasapainon rikkoutumaa on assosioitu useisiin neurologisiin häiriöihin.Tätä sumoylaatio/desumoylaatiotasapainoa hallinnoi yksittäinen SUMO:a konjugoiva entsyymi Ubc9 ja joukko deSUMOylaaseja joita sanotaan sentriinispesifisiksi proteaaseiksi, SENP.
Aiemmin työryhmä jo osoitti, että tyypin 5 metabolisten Glu-reseptorien aktivaatio liipaisee esiin ohimenevän Ubc9- esiintymän dendriittihaarakkeissa, mikä johtaa nopeaan nousuun synaptisessa SUMOyloitumisessa. Kuitenkaan ei vielä oltu selvitetty lisääntynyttä synaptista sumoylaatiota tasapainottavaa mekanismia, joten tutkijaryhmä alkoi selvittää SENP1- entsyymin diffuusio.ominaisuuksia käyttämällä kombinoituja biokemiallisia lähestymistapoja ja yksittäisten hippokampihaarakkeiden valovaikutukseen perustuvia menetelmiä (photobleaching/ photoconversion). He osoittivat, että mGlu5R-aktivaatio johti ajasta riippuvaan laskuun SENP1:n poistumistahdissa yksittäisestä hippokampihaarakkeesta. Aiheutunut SENP1:n postsynaptinen kertymä palautti alkuperäistasoihin synaptisen sumoylaation. Kaiken kaikkiaan tutkijoiden löydöt paljastivat, että mGluR-järjestelmä on sentraalinen aktiviteetista riippuva mekanismi, joka pitää yllä sumoylaation homeostaasia imettäväissynapsissa.
Cell Mol Life Sci. 2019 Mar 23. doi: 10.1007/s00018-019-03075-8. [Epub ahead of print]
The synaptic balance between sumoylation and desumoylation is maintained by the activation of metabotropic mGlu5 receptors.
Schorova L1, Pronot M1, Poupon G1, Prieto M1, Folci A1, Khayachi A1, Brau F1, Cassé F1, Gwizdek C1, Martin S2. Abstract
Sumoylation
is a reversible post-translational modification essential to the
modulation of neuronal function, including neurotransmitter release and
synaptic plasticity. A tightly regulated equilibrium between the
sumoylation and desumoylation
processes is critical to the brain function and its disruption has been
associated with several neurological disorders. This sumoylation/desumoylation
balance is governed by the activity of the sole SUMO-conjugating enzyme
Ubc9 and a group of desumoylases called SENPs, respectively. We
previously demonstrated that the activation of type 5 metabotropic
glutamate receptors (mGlu5R) triggers the transient trapping of Ubc9 in
dendritic spines, leading to a rapid increase in the overall synaptic
sumoylation. However, the mechanisms balancing this increased synaptic
sumoylation are still not known. Here, we examined the diffusion
properties of the SENP1 enzyme using a combination of advanced
biochemical approaches and restricted photobleaching/photoconversion of
individual hippocampal spines. We demonstrated that the activation of
mGlu5R leads to a time-dependent decrease in the exit rate of SENP1 from
dendritic spines. The resulting post-synaptic accumulation of SENP1
restores synaptic sumoylation to initial levels. Altogether, our
findings reveal the mGlu5R system as a central activity-dependent
mechanism to maintaining the homeostasis of sumoylation at the mammalian
synapse. KEYWORDS: Desumoylation; SENP1; Sumoylation; Synapse; mGlu5 receptor
Etiketter:
mGlu5R,
Neuronin sumoylaatio ja desumoylaatio,
Ubc9 ja SENP1
Prenumerera på:
Inlägg (Atom)