Leta i den här bloggen

torsdag 15 oktober 2015

IL-1A polymorfismi ja AD

http://www.ncbi.nlm.nih.gov/pubmed/17257626

Life Sci. 2007 Feb 27;80(12):1152-6. Epub 2006 Dec 23.

C/T conversion alters interleukin-1A promoter function in a human astrocyte cell line.

Abstract

Recently, association of an interleukin-1A promoter polymorphism (-889, thymine/thymine (T/T)) with Alzheimer's disease was reported, suggesting that this cytokine may play an important role in disease development. To understand the mechanism underlying the interleukin-1A promoter's role in Alzheimer's disease, a study comparing promoter function of an interleukin-1A polymorphism was performed in the SVG astroglia cell line. The effects of thymine and cytosine on transcriptional activity of the interleukin-1A promoter were analyzed by testing luciferase-reporter activity in transfected SVG cells. Our results demonstrate that cytosine/thymine conversion increases activity of the interleukin-1A promoter in SVG cells. Both sodium salicylate and lovastatin are able to block induced promoter activities in astroglial cells. Induced promoter activity by the polymorphism (T/T) may result in the upregulation of interleukin-1alpha protein and "cytokine cycle" amplification, which may promote disease development.
PMID:
17257626
[PubMed - indexed for MEDLINE]

PMCID:
PMC1850933

Free PMC Article

tisdag 13 oktober 2015

Hakusana DNA repair mechanism in neurone

Search results                13.10.2015

Items: 1 to 20 of 166

1.
Fluteau A, Ince PG, Minett T, Matthews FE, Brayne C, Garwood CJ, Ratcliffe LE, Morgan S, Heath PR, Shaw PJ, Wharton SB, Simpson JE; MRC Cognitive Function Ageing Neuropathology Study Group.
Neurosci Lett. 2015 Oct 8. pii: S0304-3940(15)30164-6. doi: 10.1016/j.neulet.2015.10.001. [Epub ahead of print]
PMID:
26455863
2.
Xia N, Zhang Q, Wang ST, Gu L, Yang HM, Liu L, Bakshi R, Yang H, Zhang H.
Free Radic Biol Med. 2015 Oct 8. pii: S0891-5849(15)00595-X. doi: 10.1016/j.freeradbiomed.2015.09.017. [Epub ahead of print]
PMID:
26454081
3.
Romero AM, Palanca A, Ruiz-Soto M, Llorca J, Marín MP, Renau-Piqueras J, Berciano MT, Lafarga M.
Neurotox Res. 2015 Aug 12. [Epub ahead of print]
PMID:
26264240
4.
Leandro GS, Sykora P, Bohr VA.
Mutat Res. 2015 Jun;776:31-9. doi: 10.1016/j.mrfmmm.2014.12.011. Epub 2015 Jan 4. Review.
PMID:
26255938
5.
Kim HS, Guo C, Thompson EL, Jiang Y, Kelley MR, Vasko MR, Lee SH.
Mutat Res. 2015 Sep;779:96-104. doi: 10.1016/j.mrfmmm.2015.06.010. Epub 2015 Jun 26.
PMID:
26164266
6.
Tronov VA, Vinogradova YV, Poplinskaya VA, Nekrasova EI, Ostrovsky MA.
Tsitologiia. 2015;57(2):119-28. Russian.
PMID:
26035969
7.
8.
van Leeuwen LA, Hoozemans JJ.
Acta Neuropathol. 2015 Apr;129(4):511-25. doi: 10.1007/s00401-015-1382-7. Epub 2015 Jan 25.
9.
Chucair-Elliott AJ, Zheng M, Carr DJ.
Invest Ophthalmol Vis Sci. 2015 Jan 13;56(2):1097-107. doi: 10.1167/iovs.14-15596.
10.
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK.
ACS Chem Neurosci. 2014 Dec 17;5(12):1164-77. doi: 10.1021/cn500117a. Epub 2014 Oct 10. Review.
PMID:
25250644
11.
Liu J, Li J, Yang Y, Wang X, Zhang Z, Zhang L.
Neural Regen Res. 2014 Apr 1;9(7):727-34. doi: 10.4103/1673-5374.131577. Review.
12.
Fowler AK, Thompson J, Chen L, Dagda M, Dertien J, Dossou KS, Moaddel R, Bergeson SE, Kruman II.
PLoS One. 2014 Sep 4;9(9):e106945. doi: 10.1371/journal.pone.0106945. eCollection 2014.
13.
Zhou Y, Liu S, Oztürk A, Hicks GG.
Rare Dis. 2014 Jun 12;2:e29515. doi: 10.4161/rdis.29515. eCollection 2014.
14.
Deng Q, Holler CJ, Taylor G, Hudson KF, Watkins W, Gearing M, Ito D, Murray ME, Dickson DW, Seyfried NT, Kukar T.
J Neurosci. 2014 Jun 4;34(23):7802-13. doi: 10.1523/JNEUROSCI.0172-14.2014.
15.
Ogara MF, Belluscio LM, de la Fuente V, Berardino BG, Sonzogni SV, Byk L, Marazita M, Cánepa ET.
Biochim Biophys Acta. 2014 Jul;1843(7):1309-24. doi: 10.1016/j.bbamcr.2014.03.026. Epub 2014 Apr 3.
16.
Hanger DP, Lau DH, Phillips EC, Bondulich MK, Guo T, Woodward BW, Pooler AM, Noble W.
J Alzheimers Dis. 2014;40 Suppl 1:S37-45. doi: 10.3233/JAD-132054. Review.
PMID:
24595196
17.
Kang J, Yeom E, Lim J, Choi KW.
PLoS One. 2014 Feb 5;9(2):e88171. doi: 10.1371/journal.pone.0088171. eCollection 2014.
18.
Spector R, Johanson CE.
Mol Brain. 2014 Jan 10;7:3. doi: 10.1186/1756-6606-7-3. Review.
19.
Griffin SM, Pickard MR, Orme RP, Hawkins CP, Fricker RA.
Neuroreport. 2013 Dec 18;24(18):1041-6. doi: 10.1097/WNR.0000000000000071.
PMID:
24257250
20.
Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, St Claire J, Panigrahi GB, Hou C, Holloway K, Gillis T, Guide JR, Cohen PE, Li GM, Pearson CE, Daly MJ, Wheeler VC.
PLoS Genet. 2013 Oct;9(10):e1003930. doi: 10.1371/journal.pgen.1003930. Epub 2013 Oct 31.

Mitokondrioitten autofagosytoosi


J Neuropathol Exp Neurol. 2007 Jun;66(6):525-32.
Alzheimerin taudissa on mitokondriaaliset epänormaaliudet huomattava piirre. Tässä tutkimuksessa katsotaan kahta mitokondriaalista merkitsijää: sytokromioksidaasi-1 entsyymiä ja liponihappoa, joka on rikkiä sisältävä kofaktori, jota tarvitaan useaissa  mitokondrian  entsyymikomplekseissa.  Näitä verrattiin käyttämällä valomikroskooppi-ja elektronimikroskooppianalyysejä ja immunologisia menetelmiåä Sekä liponihapon  että sytokromioksidaasi-1-immunoreaktiviteetit   ovat kohonneet Alzheimerin taudissa pyramidaalineuronien sytoplasmassa verrattuna kontrollihenkilöihin. Liponihapon todettiin vahvasti  assosioituvan Alzheimerin  taudissa  granulaarisiin ( jyväisiin) struktuureihin ja ultrastruktuurin analyysissä lokalisoituvan mitokondrioihin, sytosoliin, autofagosyyttisiin rakkuloihin ja lipofuskiiniin, mutta niin ei ollut  kontrollitapauksissa. Nämä tiedot osoittavat, että Alzheimerin taudissa mitokondriat ovat avain kohteita lisääntyneelle autofagosytoottiselle hajoittamiselle. Johtuuko lisääntynyt autofagosytoosi  mitokondrioitten kohonneesta  turnover- ilmiöstä vai ovatko  mitokondriat Alzheimerin taudissa  tavallista  altistuneempia  autofagosytoosille - tämä on ratkaisematon asia.

Autophagocytosis of mitochondria is prominent in Alzheimer disease.

  • J Neuropathol Exp Neurol. 2007 Jul;66(7):674.

Abstract

Mitochondrial abnormalities are prominent in Alzheimer disease. In this study, 2 mitochondrial markers, cytochrome oxidase-1 and lipoic acid, a sulfur-containing cofactor required for the activity of several mitochondrial enzyme complexes, were compared using light and electron microscopic analyses and immunoblot assays. Both lipoic acid and cytochrome oxidase-1 immunoreactivity are increased in the cytoplasm of pyramidal neurons in Alzheimer disease compared with control cases. Of significance, lipoic acid was found to be strongly associated with granular structures, and ultrastructure analysis showed localization to mitochondria, cytosol, and, importantly, in organelles identified as autophagic vacuoles and lipofuscin in Alzheimer disease but not control cases. Cytochrome oxidase-1 immunoreactivity was limited to mitochondria and cytosol in both Alzheimer and control cases. These data suggest that mitochondria are key targets of increased autophagic degradation in Alzheimer disease. Whether increased autophagocytosis is a consequence of an increased turnover of mitochondria or whether the mitochondria in Alzheimer disease are more susceptible to autophagy remains to be resolved.
PMID:
17549012
[PubMed - indexed for MEDLINE]