Leta i den här bloggen

söndag 19 maj 2019

Neuroprotektiivinen E3 ubikitiiniligaasi MGRN1(RNF156) (16p13.3)

RNF156, MGRN1 (16p13.3), Mahogunin Ring Finger-1
Expr. Spleen, brain.
https://www.ncbi.nlm.nih.gov/gene/?term=RNF156
Preferred Names
E3 ubiquitin-protein ligase MGRN1
Names
RING finger protein 156
RING-type E3 ubiquitin transferase MGRN1
mahogunin RING finger protein 1
mahogunin ring finger 1, E3 ubiquitin protein ligase
probable E3 ubiquitin-protein ligase MGRN1

Conserved Domains (3) summary
PHA02929
Location:232331
PHA02929; N1R/p28-like protein; Provisional
TIGR00599
Location:273449
rad18; DNA repair protein rad18.All proteins in this family for which functions are known are involved in nucleotide excision repair.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]
pfam13920
Location:274319
zf-C3HC4_3; Zinc finger, C3HC4 type (RING finger)

 

Related articles in PubMed

1.
Gunn TM, Silvius D, Lester A, Gibbs B.
Mamm Genome. 2019 May 14. doi: 10.1007/s00335-019-09802-7. [Epub ahead of print]
Spongiform encephalopathy is an intriguing yet poorly understood neuropathology characterized by vacuoles, demyelination, and gliosis.
 It is observed
  • in patients with prion disease, 
  • primary mitochondrial disease,
  •  HIV-1 infection of the brain, and 
  • some inherited disorders,
 but the underlying mechanism of disease remains unclear. The brains of mice lacking the MGRN1 E3 ubiquitin ligase develop vacuoles by 9 months of age. MGRN1-dependent ubiquitination has been reported to regulate mitofusin 1 and GP78, suggesting MGRN1 may have a direct effect on mitochondrial homeostasis. Here, we demonstrate that some MGRN1 localizes to mitochondria, most likely due to N-myristoylation, and mitochondria in cells from Mgrn1 null mutant mice display fragmentation and depolarization without recruitment of the parkin E3 ubiquitin ligase. The late onset of pathology in the brains of Mgrn1 null mutant mice suggests that a further, age-dependent effect on mitochondrial homeostasis may be required to trigger vacuolation. Parkin protein and mRNA levels showed a significant decline in the brains of Mgrn1 null mutant mice by 12 months of age. To test whether loss of parkin triggers vacuolation through a synergistic effect, we generated Mgrn1; parkin double mutant mice. By 1 month of age, their brains demonstrated more severe mitochondrial dysfunction than Mgrn1 null mutants, but there was no effect on the age-of-onset of spongiform neurodegeneration. Expression of the ATF4 transcription factor, a key regulator of the mitochondrial stress response, also declined in the brains of aged Mgrn1 null mutant mice. Together, the data presented here indicate that loss of MGRN1 has early, direct effects on mitochondrial homeostasis and late, indirect effects on the ability of cells to respond to mitochondrial stress.DOI:10.1007/s00335-019-09802-7

Inga kommentarer:

Skicka en kommentar