Leta i den här bloggen

fredag 10 maj 2019

Aivojen biomarkkereista uusi väitöstyö tänään. Fokus: iskeminen aivohalvaus

https://gupea.ub.gu.se/handle/2077/59055
osatyöt ovat:
I. Pedersen A, Redfors P, Lundberg L, Gils A, Declerck PJ, Nilsson S, Jood K, Jern C. Haemostatic biomarkers are associated with long-term recurrent vascular events after ischaemic stroke. Thromb Haemost. 2016;116: 537-543.
VISA ARTIKEL


II. Pedersen A, Stanne TM, Redfors P, Viken J, Samuelsson H, Nilsson S, Jood K, Jern C. Fibrinogen concentrations predict long-term cognitive outcome in young ischemic stroke patients. Res Pract Thromb Haemost. 2018;2:339-346.
VISA ARTIKEL


III. Pedersen A, Stanne TM, Nilsson S, Klasson S, Rosengren L, Holmegaard L, Jood K, Blennow K, Zetterberg H, Jern C. Circulating neurofilament light in ischemic stroke: Temporal profile and outcome prediction. Submitted manuscript.

IV. Söderholm M*, Pedersen A*, Lorentzen E, Stanne TM, Bevan S, Olsson M, Cole JW, Fernandez-Cadenas I, Hankey GJ, Jimenez-Conde J, Jood K, Lee J-M, Lemmens R, Levi C, Mitchell BD, Norrving B, Rannikmäe K, Rost NS, Rosand J, Rothwell PM, Scott R, Strbian D, Sturm JW, Sudlow C, Traylor M, Thijs V, Tatlisumak T, Woo D, Worrall BB, Maguire JM**, Lindgren A**, Jern C**, on behalf of the International Stroke Genetics Consortium, the NINDS-SiGN Consortium, and the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network. Genome-wide association meta-analysis of functional outcome after ischemic stroke. Neurology, 2019;92:e1271-e1283. *These authors contributed equally to this work. **These authors jointly supervised this work.
VISA ARTIKEL

The overall aim of this thesis was to identify novel biomarkers for ischemic stroke outcomes. The specific aims were to test the hypotheses that circulating concentrations of hemostatic biomarkers predict the long-term post-stroke risk of recurrent vascular events/death (paper I) and/or cognitive impairment (paper II) and that circulating concentrations of a marker of neuronal damage (neurofilament light chain, NfL) predict post-stroke functional and neurological outcomes (paper III) as well as to identify genetic variants associated with post-stroke functional outcome through a genome wide association study (GWAS) approach (paper IV). Papers I-III are based on the first 600 cases and 600 controls recruited to the Sahlgrenska Academy Study on Ischemic Stroke, which includes consecutive ischemic stroke cases aged 18-69 years and sex- and age-matched population-based controls. In cases, blood sampling was performed in the acute phase, after three months, and in a subset also 7 years post-stroke. Controls were sampled once. These blood samples were used to analyze the protein and genetic biomarkers investigated in this thesis. Vascular events and death up to 14 years after inclusion were identified. In cases, functional and neurological outcomes were assessed at 3 months by the modified Rankin scale (mRS) and the NIH Stroke Scale (NIHSS), respectively. At 2 years, the mRS was assessed again, and in a subsample, long-term (7-year) outcomes were assessed by mRS and NIHSS. The 7-year follow-up also included cognitive testing with the Barrow Neurological Institute Screen for Higher Cerebral Functions (BNIS) and Trailmaking Test. Paper IV was based on a GWAS approach, i.e. genetic variations spread throughout the entire genome were analyzed with respect to their association to 3-month post-stroke functional outcome in a hypothesis free manner. This study was performed within the Genetics of Ischemic Stroke Functional Outcome (GISCOME) network, and included 6,165 ischemic stroke cases from 12 studies in Europe, USA and Australia. 
 In paper I, we found that plasma levels of hemostatic protein biomarkers were associated with vascular death and coronary events, but not with recurrent stroke.
 In paper II, we found that, in cases <50 at="" b="" index="" stroke="" years="">higher concentrations of the hemostatic protein fibrinogen were independently associated with worse cognitive outcome. 
 In paper III, we found that acute phase and 3-month serum levels of NfL were independently associated to NIHSS and mRS both in short- and long-term follow-up.
 In paper IV, we identified one genetic variant associated with functional outcome (mRS score 0-2 vs 3-6) at genome-wide significance. 
In addition, several genetic variants demonstrated suggestive associations, and some of these are located within or near genes with experimental evidence of influence on ischemic stroke volume and/or brain recovery.
 In conclusion, the results from this thesis demonstrate associations between circulating protein levels as well as genetic markers and ischemic stroke outcomes. These results add knowledge on potential mechanisms influencing outcomes after ischemic stroke and may in the long run contribute to a more personalized post-stroke management.

Kommentti: siis rheologisiä  tekijöitä 8gibrinogeenifunktio)  ja regeneraatiopotentiaalia  (sytoportektiivisuuden ylläpito) voidaan tarvitaessa  yksilöllisesti moduloida) . (Nrf2) 

onsdag 8 maj 2019

Muita aivovamman biomarkkereita erikseen ja paneleina

. Duodecim 7/2019 kirjoittaa aiheesta
"Parempaa aivovammapotilaiden diagnostiikkaa ja hoitoa  verikokeen avulla?"
Siteeraan artikkelin  taustatekstiä:
(Jatkuu..)
 Edellä mainittujen proteiinibiomarkkereiden  (S100B, GFAP, UCH-L1) ohella  on tutkittu pieniä verestä mitattavia aineenvaihduntatuotteita kuten rasvahappoja ja glukoosijohdoksia aivovammadiagnostiikassa.    Toisin kuin usean proteiinin näiden aineenvaihduntabiomarkkereiden pääsy verenkiertoon  ei vaadi veri-aivoesteen vauriota.

Aivovammamarkkereiden tutkimuksessa metabolomiikan menetelmiä on toistaiseksi käytetty vileä vähän.
Hiljattain kuuden aineenvaihduntatuotteen yhdistelmän osoitettiin olevan suomalais-brittiläisessä kahden keskuksen tutkimuksessa jopa GFAP_UCH-L1- testiä tarkempi tunnistamaan TT-kuvantamista tarvitsevat potilaat.
Dickens AM, Posti JP, Takala RSK et al. Serum metabolites with computed tomography findings after traumatic brain injury. J neurotrauma 2018

Löydänkin paljon lähteitä hakemalla ylläolevalla tekstillä.  Tässä abstraktissa kerrotaan 8 eri biomarkkerin  tutkimuksesta akuutissa aivovammassa tarkoituksena  pystyä erottamaan  aivovamman eri vaikeusasteissa (Glascow Coma Scale)   TT- positiiviset ja TT negatiiviset aivovammat. 
Tutkimuksessa käytetyt proteiinibiomarkerit ovat:
  • beta-amyloidiiisoformi 1-40(Abeta40) 
  • beta-amyloidi-isoformi 1-42(Abeta42),
  • gliaalinen fibrillaarinen asidinen proteiini GFAP,
  • sydänrasvahappoa sitova proteiini H-FABP
  • Interleukiini-10 (IL-10)
  • kevyt neurofilamentti NF-L
  • S100 kalsiumia sitova proteiini B (S100B) 
  • Tau proteiini
 TT-negatiiviset ja TT-positiiviset potilaat erotti parhaiten biomarkkerit NF_L, GFAP ja tau  sekä lievien aivovammojen ryhmässä että kaikenasteisten aivovammojen ryhmissä.
Paras kolmen  panelikombinaatio kaikenasteisten aivovammojen ryhmissä oli GFAP +H-FABP + IL10 ja paras kolmen paneli  lievien vammojen ryhmässä oli H-FABP + S100B + tau.   Panelit koostuivat lähinnä eri biomarkkereista kuin niistä, jotka yksinään olivat parhaita erottamassa TT+ ja TT- potilaat.
https://www.liebertpub.com/doi/10.1089/neu.2018.6254 

Abstract

The aim of the study was to examine the ability of eight protein biomarkers and their combinations in discriminating computed tomography (CT)-negative and CT-positive patients with traumatic brain injury (TBI), utilizing highly sensitive immunoassays in a well-characterized cohort. Blood samples were obtained from 160 patients with acute TBI within 24 h of admission. Levels of β-amyloid isoforms 1–40 (Aβ40) and 1–42 (Aβ42), glial fibrillary acidic protein (GFAP), heart fatty-acid binding protein (H-FABP), interleukin 10 (IL-10), neurofilament light (NF-L), S100 calcium-binding protein B (S100B), and tau were measured.
Patients were divided into CT-negative (n = 65) and CT-positive (n = 95), and analyses were conducted separately for TBIs of all severities (Glasgow Coma Scale [GCS] score 3–15) and
 mild TBIs (mTBIs; GCS 13–15).
 NF-L, GFAP, and tau were the best in discriminating CT-negative and CT-positive patients, both in patients with mTBI and with all severities.
 In patients with all severities, area under the curve of the receiver operating characteristic (AUC) was 0.822, 0.817, and 0.781 for GFAP, NF-L, and tau, respectively.
 In patients with mTBI, AUC was 0.720, 0.689, and 0.676, for GFAP, tau, and NF-L, respectively. The best panel of three biomarkers for discriminating CT-negative and CT-positive patients in the group of all severities was a combination of GFAP+H-FABP+IL-10, with a sensitivity of 100% and specificity of 38.5%.
In patients with mTBI, the best panel of three biomarkers was H-FABP+S100B+tau, with a sensitivity of 100% and specificity of 46.4%. Panels of biomarkers outperform individual biomarkers in separating CT-negative and CT-positive patients. Panels consisted mainly of different biomarkers than those that performed best as an individual biomarker.

GFAP-UCH-L1-testistä biomarkkeri akuutissa aivovammassa

. Duodecim 7/2019 kirjoittaa aiheesta
"Parempaa aivovammapotilaiden diagnostiikkaa ja hoitoa  verikokeen avulla?"
Siteeraan artikkelin  taustatekstiä:

"Verestä mitattavat aivovammamerkkiaineet ( biomarkkerit) tekevät tuloaan arkipäivän lääketieteeseen.  Yhdysvaltain lääkevalvontaviranopmainen(FDA) hyväksyi vuonna 2018 ensimmäisen testin aivovammapotilaiden kuvantamistarpeen seulontaan. Vuosikymmenien tutkimuksen  ja  odotuksen jälkeen biomarkkerit tuovat lähivuosina aivovammojen arviointiin toivottua objektiivisuutta".

"Väestötason vuosittainen aivovammojen ilmaantuvuus on jopa 790/ 100 000. Näistä vammoista valtaosa on lieviä. Lievien aivovammojen toipumisennuste on pääosin hyvä. Lievää vaikeampiin aivovammoihin liittyy puolestaan merkittävää invaliditeettia ja kuolleisuutta."

"Akuutin aivovamman arvioinnin haasteet voidaan jakaa karkeasti kolmeen teemaan:
(1) pään päivystyksellisen (akuutin)  tietokonekerroskuvauksen (TT, tietokonetomografia) tarve,
(2) lievien aivovammojen diagnostisten kriteerien subjektiivisuus
ja
(3) toipumisennusteen määrittäminen.
Näihin haasteisiin on pyritty löytämään ratkaisuja  tavallisesta verikokeesta, perifeerisestä verestä proteomiikan, genomiikan, metabolomiikan ja immunologian keinoin löydetyillä biomarkkereilla tai biomarkkeriyhdistelmillä. "

"Pään TT-kuvaus on muodostunut kultaiseksi standardiksi kallonsisäisten vammojen akuuttitutkimuksena. (Golden standard:  acute computer tomography)".

Kuvantamistarvetta vähentäville biomarkkereille on selkeä tarve, sillä valtaosa tapaturman vuoksi tehtävistä pään TT-kuvauksista (  jotka ovat kalliitat ja altistavat jonisoivalle säteilylle) on löydöksettömiä, siis aivan normaalilöytöjä.
 ( Tässä tarkoituksessa  2013  on otettu jo käyttöön S100B, muta se ei ole  yksiselitteinen ja riittävä).

Viime vuonna (2018) FDA:n hyväksynnän saanut testi sisältää gliasoluperäisen glial fibrillary acidic (GFAP) ja neuroniperäisen ubiquitin carboxy terminal hydrolase L1 (UCH-L1)-proteiinin pitoisuusmäärityksen.
Nämä biomarkkerit ovat varsin aivokudosspesifisiä:  kuvantaen todettaville aivokudoksen akuuteille vaurioille  ne ovat herkkiä eivätkä  puolestaan reagoi  S100B:n tavoin herkästi kallon ulkopuolisiin vammoihin. Testi validoitiin laajassa tutkimuksessa, joka osoitti testin ennustavan luotettavasti TT(+)-aivovammalöydöksiä lievän aivovamman saaneilla potilailla.
Mikä hidastaa testin kliinistä käyttöönottoa?
Puuttuu riittävän nopeaa laboratorioanalytiikkaa ja hoitopaikkamittauslaitteita ( point-of-care-test) sekä viitearvot:  tarkat potilasryhmäkohtaiset  (esimerkiksi monivamma-, lapsi-,vanhus- ja kroonisia aivosairauksia sairastavat potilaat)  viitearvot uupuvat".  katson mitä tästä testistä löytyy tietoa (Huomaan että UCH-L1 onkin tuttu  molekyyli, se on  deubikitinaasien DUB  yhdeestä alaryhmästä UCH, joten otan siitä erikseen  seuraavassa  geenitiedot ja löytöhistorian, nimet ja referenssit  talteen myös vihkooni DUB-luetteloon). Muitakin biomarkkereita  mainitaan  Duodecimin artikkelisas ja jatkan niistä erikseen.

Search results

Items: 5

1.

GFAP-UCH-L1 test
Bazarian JJ, Biberthaler P et al. 
2.
Posti JP, Takala RS, Runtti H, Newcombe VF, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP, Hossain MI, Kyllönen A, Maanpää HR, Tallus J, Hutchinson PJ, van Gils M, Menon DK, Tenovuo O.
Neurosurgery. 2016 Sep;79(3):456-64. doi: 10.1227/NEU.0000000000001226. Abstract BACKGROUND:
Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) are promising biomarkers of traumatic brain injury (TBI).
OBJECTIVE:
We investigated the relation of the GFAP and UCH-L1 levels to the severity of TBI during the first week after injury.
METHODS:
Plasma UCH-L1 and GFAP were measured from 324 consecutive patients with acute TBI and 81 control subject enrolled in a 2-center prospective study. The baseline measures included initial Glasgow Coma Scale (GCS), head computed tomographic (CT) scan at admission, and blood samples for protein biomarkers that were collected at admission and on days 1, 2, 3, and 7 after injury.
RESULTS:
Plasma levels of GFAP and UCH-L1 during the first 2 days after the injury strongly correlated with the initial severity of TBI as assessed with GCS. Additionally, levels of UCH-L1 on the seventh day after the injury were significantly related to the admission GCS scores. At admission, both biomarkers were capable of distinguishing mass lesions from diffuse injuries in CT, and the area under the curve of the receiver-operating characteristic curve for prediction of any pathological finding in CT was 0.739 (95% confidence interval, 0.636-0.815) and 0.621 (95% confidence interval, 0.517-0.713) for GFAP and UCH-L1, respectively.
CONCLUSION:
These results support the prior findings of the potential role of GFAP and UCH-L1 in acute-phase diagnostics of TBI. The novel finding is that levels of GFAP and UCH-L1 correlated with the initial severity of TBI during the first 2 days after the injury, thus enabling a window for TBI diagnostics with latency.
ABBREVIATIONS:
AUC, area under the curve
CI, confidence interval
ED, emergency department
GCS, Glasgow Coma Scale
GFAP, glial fibrillary acidic protein
IMPACT, International Mission for Prognosis and Clinical Trial
ROC, receiver-operating characteristic
TBI, traumatic brain injury
TRACK-TBI, Transforming Research and Clinical Knowledge in Traumatic Brain Injury
UCH-L1, ubiquitin C-terminal hydrolase-L1.

UCH-L1 , PARK5 (4p13)

Also known as
NDGOA; PARK5; PGP95; SPG79; PGP9.5; Uch-L1; HEL-117; PGP 9.5; HEL-S-53
Summary
The protein encoded by this gene belongs to the peptidase C12 family. This enzyme is a thiol protease that hydrolyzes a peptide bond at the C-terminal glycine of ubiquitin. This gene is specifically expressed in the neurons and in cells of the diffuse neuroendocrine system. Mutations in this gene may be associated with Parkinson disease.[provided by RefSeq, Sep 2009]
Expression
Biased expression in brain (RPKM 389.7), adrenal (RPKM 70.8) and 2 other tissues See more Orthologs mouse all
Preferred Names
ubiquitin carboxyl-terminal hydrolase isozyme L1
Names
epididymis luminal protein 117
epididymis secretory protein Li 53
neuron cytoplasmic protein 9.5
ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)
ubiquitin thioesterase L1
ubiquitin thiolesterase
NP_004172.2

Related articles in PubMed

Maailmassa etsitään biomarkkereita aivotraumojen diagnostisiin ja monitoriointitarpeisiin .

S100-proteiiniperheen S100B on eräs biomarkkeri, mutta se ei ole  spesifinen keskushermoston  sisäisille vaurioille. Duodecim 7/2019 kirjoittaa aiheesta
"Parempaa aivovammapotilaiden diagnostiikkaa ja hoitoa  verikokeen avulla?"
Vuonna 2013 skandinaavinen neurotraumakomitea julkaisi ensimmäisen aivovammojen hoitosuosituksen, joka integroi aivovammapotilaan kliiniseen arviointiin  biomarkkerin. kyseinen suositus sisältää hermotukisoluissa ( glia)  ekspressoituvan S100B-proteiinin määrityksen osana pienen riskin lievän aivovamman saaneen potilaan kuvantamistarpeen arviointia". Kyseisen suosituksen on raportoitu vähentävän sekä diagnostiikkakustannuksia, että pään tietokonetomografioiden määrää".  (Niistä suurin osa on ilman löydöstä ja  antaa jonisoivaa säteilyä joka kertyessään  nostaa syöpäriskiä, joten turhia kuvauksia tulisi välttää ja kuvaustarve tulisi  varmistaa  verikokeista  lievissä  aivovammoissa - ei edes  lumbaalipunktiosta, joka on invasiivinen diagnostinen menetelmä. Lieviä  aivovammoja tulee  lisääntyvässä määrin  jo urheilun alueelta, esim jääkiekkoilusta).
 " Mainitun  biomarkkerin S100B   käyttöä rajoittaa kuitenkin keskushermoston ulkopuolinen ekspressio, jonka vuosi merkkiaine reagoi muun muassa tuki- ja liikuntaelimistön vammoihin. S100B ei sovellu itsenäiseksi testiksi aivovammoihin, vaan sitä on käytettävä yhdessä kliinsiten löydösten kansas, kuten on todettu skandinaavisessa suosituksessa.  toistaiseksi tämän hoitosuosituksen luotettavuudesta on vielä vähän tutkimusnäyttöä".
.

Ensinnäkin vähän  S100-proteiiniperheestä Pub med haku  "S100 functions"(2013).
https://www.ncbi.nlm.nih.gov/pubmed/22834835

2013 Jan;13(1):24-57. tämä on laaja artikkeli kaiksita S100 proteiineista ja otan siitä sitaatin vain tästä S100B:   (Jatkan toiseen otsikkoon   Duodecimin mainitsemista muista uusista biomarkkereista).

Functions of S100 proteins.

The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Free PMC Article
An external file that holds a picture, illustration, etc.
Object name is nihms-488854-f0006.jpg

Schematic representation of proposed intracellular effects of S100B. S100B interacts with several intracellular proteins as shown thereby regulating protein phosphorylation, enzyme activities, the state of assembly of certain cytoskeleton components, the transcription factor p53, protein degradation, cell proliferation, locomotion and differentiation, dark adaptation of photoreceptors, Ca2+ homeostasis and the innate inflammatory response.

S100B

S100B is expressed in astrocytes, certain neuronal populations, Schwann cells, melanocytes, chondrocytes, adipocytes, skeletal myofibers and associated satellite cells, certain dendritic cell and lymphocyte populations and a few other cell types []. It acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation [-] (Fig. 6), which might have important implications during brain, cartilage and skeletal muscle development and regeneration/repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. In particular, downregulation of S100B expression in precursor cells in a defined temporal window appears to be permissive for cell differentiation [-,-]. Sex-determining region Y-type high mobility group box 5, 6 and 9 (the so-called SOX trio), NF-κB, EGF and the Th-1-derived cytokine IFN-γ, regulate S100B expression in several cell types [see for review; also see ]. However, cells that downregulate S100B expression at the onset of their differentiation resume S100B expression at completion of development [,], and in mature cells the protein regulate a large variety of key activities including maintenance of shape, transcription, protein degradation, Ca2+ homeostasis, energy metabolism and enzyme functions by interacting with a wide array of target proteins. Binding partners of S100B within cells are tubulin and the microtubule-associated τ protein, the actin-binding protein caldesmon, calponin, type III intermediate filament subunits, annexin 6 [,-], membrane-bound guanylate cyclase, the small GTPase Rac1 and Cdc42 effector IQGAP1, Src kinase, the serine/threonine protein kinase Ndr, the tumor suppressor p53, intermediates upstream of IKKβ/NF-κB, the giant phosphoprotein AHNAK/desmoyokin, the E3 ligase hdm2, dopamine D2 receptor and the mitochondrial AAA ATPase, ATAD3A [,,] (Fig. 6). Thus, lack of S100B downregulation may maintain cell proliferation with potential beneficial effects during development and tissue regeneration, and detrimental effects during tumorigenesis. S100B also regulates Ca2+ homeostasis [-], but opposing results were reported in astrocytes and VSMCs [,] (Fig. 6). Moreover, S100B binds to, and inhibits EAG1 potassium channels Ca2+-dependently (Fig. 6) raising the possibility that its negative effects on cell differentiation may be via this mechanism as well []. Chronically high S100B levels such as those obtained in S100B transgenic mice are proposed to be causally correlated with Parkinson's disease likely via downregulation of dopamine D2 receptor and G protein-coupled receptor kinase2 expression, increased dopamine synthesis and metabolism, and decreased serotonin levels [] and/or S100B interaction with the third cytoplasmic loop of the dopamine D2 receptor and extracellular signal-regulated kinase (ERK)1/2-mediated inhibition of adenylyl cyclase activity in striatal neurons [] (Fig. 6). S100B is highly expressed in astrocytes [] and to a lesser extent in certain neuronal populations [,], and its elevation in serum positively correlates with mood disorders [] and schizophrenia []. Serum levels of S100B are of prognostic value in patients with cutaneous melanoma [] and breast cancer []. Whether serum levels of S100B are an outcome predictor in severe traumatic brain injury is a matter of debate [,].

tisdag 12 mars 2019

Efriinit ja glutamaatin kuljettajat- onko yhteistä nimittäjää?

 Efriini-efriinireseptorisignalointijärjestelmä osallistuu hermostossa  kognitiivisen funktion hienosäätöön. Tästä on  lyhyt kappale laajemmasas artikkelissa. pubMed haku antoi 9 artikkelia josita osa on alla  sitaattina. kaikenkaikkiaan  olen sitä mieltä, että  D-seriiniin tulee kiinnittää huomiota. sen normaali muodostuminen pitää tarkistaa.  Se on   protektiivinen tekijä  excitotoksisuuta vastaan.

Katson vanhoja ja uusia tietoja D-seriinin aineenvaihdunnasta. Seriini ei ole essentielli aminohappo, muta sen endogeeninen synteesi  on monen mutkan takana.


3.
Ota Y, Zanetti AT, Hallock RM.
Neural Plast. 2013;2013:185463. doi: 10.1155/2013/185463. Epub 2013 Dec 4. Review.

EFRIINISIGNALOINTI ja GLUTAMAATINKULJETTAJAT

Efriinisignalointi (jossa  ligandit ovat   efriinejä  tyyppiä A ja B  ja reseptorit  efriinireseptoreita   EPH A ja APH B tyyppiä)  tunnetaan  osallistumisesta neuraaliseen kehitykseen, jossa se  aktiinia uudelleen järjestelemällä  toimii inhiboiden  aksonien ja dendriittien kasvua.
Astrosyytin efriini-A3 ja  neuronin dendriittiulokkeen  reseptori EPHA4  tekevät  keskenään interaktion vähentämällä entsyymin GLAST ja GLT-1  pitoisuuksia,  jotta  tapahtuisi asianmukaista synaptoitumista.
GLAST entsyymi on astrosyytin kalvossa oleva  glutamaatti-aspartaatti-transporter .
GLT-1 entsyymi on postsynaptisessa  kalvossa oleva  glutamaatin kuljwttaja.
Astrosyytit ilmentävät  sekä EPHB-reseptoreja että  B-tyyppisiä  efriini-ligandeja , josita  aktiiisn on efriini-B3 LTP:n aikana  Efriini-B3 lisää D-seriinin vapautumista säätelemällä seriinirasemaasia (SR), entsyymiä, joka muuttaa L-seriiniä -D-seriiniksi.  Efriini-B3 säätelee myös SR.n kanssa  interaktion tekevää proteiinikinaasia  PKCalfa.
Efriini-B3 säätää  spesifisesti alas PKCalfa-kinaasin,   mikä aiheuttaa  taas interaktiota  seriinirasemaasin ja PICK1-  kinaasin kesken ja siitä   seuraa  D-seriinin vapautumista. ( PICK1 on  proteiini, joka tekee interaktion C-kinaasin kanssa).
Efriini-B3 kykenee lisäksi sitoutumaan  sekä EPHB3- että EPHA4 - reseptoreihin . kun on tutkittu  näiden kahden efriiniresptorin suhteen poistogeenisiä viljeltyjä astrosyyttejä ja mittailtu D-seriinipitoisuuksia, on  havaittu, että  molemmat reseptorit ovat välttämättömiä, jotta D-seriiniä vapautuu. Täten  Efriini-A- signaloinnin säädellessä GLT-1 pitoisuuksia, efriini-B-signalointi  säätelee    NMDA-reseptorien aktivoismisessa  tarvittavaa D-seriinipitoisuutta. 
  •  Ephrin Signaling and Glutamate Transporters

  • Ephrin signaling, consisting of ephrin-As and ephrin-Bs, is known for its involvement in neural development by inhibiting axonal and dendritic growth via actin rearrangement [].
  •  The interaction between ephrin-A3 and EphA4, which are expressed by astrocytes and dendritic spines of neurons, respectively, is involved in decreasing levels of GLAST and glutamate transporter 1 (GLT-1) for proper synapsing to occur [].
  • Astrocytes express both EphB receptors and ephrin-B ligands, ephrinB3 being the most active during LTP []. EphrinB3 enhances D-serine release by regulating serine racemase (SR), an enzyme responsible for the conversion of L-serine to D-serine, and an SR-interacting protein, protein kinase C (PKCα). 
  • Specifically, ephrinB3 downregulates PKCα in order to increase the interaction between SR and Protein Interacting with C-kinase (PICK1), causing D-serine release [].
  •  Moreover, ephrinB3 is able to bind to both EphB3 and EphA4 receptors []. By measuring D-serine levels in EphB3 and EphA4 knockouts in cultured astrocytes, both receptors were necessary for D-serine release []. Thus, while ephrin-A signaling regulates levels of GLT-1, ephrin-B signaling regulates levels of D-serine release for activation of NMDA receptors.


HUOM. tässä on D-seriinin suojaava funktio  mainittuna.  Aiemmin puhuttiin   vain glysiinistä tässä NMDA- reseptorin  ko-agonistin kohdassa , mutta  varsinainen  endogeenin molekyyli on D-Seriini, joka tehostaa NMDAr signalointia hienosäädönomaisesti ja protektiivisesti.
Tieto D-seriinistä tässä funktiossa ei ole kovin  vanha . Artikkeli  vuodelta 2000. https://www.pnas.org/content/pnas/97/9/4926.full.pdf
D-seriinin muodostuminen ei ole kovin suoraviivaista ja  saattaa komrpmittoida neuronaalista funktiota ( kognitiota ja muistitoimintaa), jos sen muodostumienn ei ole normaalia.  



Haku: 9 artikkelia

Search results

Items: 9

1.
Vastagh C, Liposits Z.
Front Cell Neurosci. 2017 Jul 4;11:183. doi: 10.3389/fncel.2017.00183. eCollection 2017.
2. ( Tämä viite Luusto-blogiin luubiologiasta 12.3. 2019)
Nielson CM, Liu CT, et al.
J Bone Miner Res. 2016 Dec;31(12):2085-2097. doi: 10.1002/jbmr.2913. Epub 2016 Sep 6.

4.
Yu X, Wang G, Gilmore A, Yee AX, Li X, Xu T, Smith SJ, Chen L, Zuo Y.
Neuron. 2013 Oct 2;80(1):64-71. doi: 10.1016/j.neuron.2013.07.014. Epub 2013 Oct 2.Refinement of mammalian neural circuits involves substantial experience-dependent synapse elimination. Using in vivo two-photon imaging, we found that experience-dependent elimination of postsynaptic dendritic spines in the cortex was accelerated in ephrin-A2 knockout (KO) mice, resulting in fewer adolescent spines integrated into adult circuits. Such increased spine removal in ephrin-A2 KOs depended on activation of glutamate receptors, as blockade of the N-methyl-D-aspartate (NMDA) receptors eliminated the difference in spine loss between wild-type and KO mice. We also showed that ephrin-A2 in the cortex colocalized with glial glutamate transporters, which were significantly downregulated in ephrin-A2 KOs. Consistently, glial glutamate transport was reduced in ephrin-A2 KOs, resulting in an accumulation of synaptic glutamate. Finally, inhibition of glial glutamate uptake promoted spine elimination in wild-type mice, resembling the phenotype of ephrin-A2 KOs. Together, our results suggest that ephrin-A2 regulates experience-dependent, NMDA receptor-mediated synaptic pruning through glial glutamate transport during maturation of the mouse cortex.
5.
Ong WY, Tanaka K, Dawe GS, Ittner LM, Farooqui AA.
J Alzheimers Dis. 2013;35(4):643-68. doi: 10.3233/JAD-121990. Review.Abstract
Progress is being made in identifying possible pathogenic factors and novel genes in the development of Alzheimer's disease (AD). Many of these could contribute to 'slow excitotoxicity', defined as neuronal loss due to overexcitation as a consequence of decreased energy production due, for instance, to changes in insulin receptor signaling; or receptor abnormalities, such as tau-induced alterations the N-methyl-D-aspartate (NMDA) receptor phosphorylation. As a result, glutamate becomes neurotoxic at concentrations that normally show no toxicity. In AD, NMDA receptors are overexcited by glutamate in a tonic, rather than a phasic manner. Moreover, in prodromal AD subjects, functional MRI reveals an increase in neural network activities relative to baseline, rather than loss of activity. This may be an attempt to compensate for reduced number of neurons, or reflect ongoing slow excitotoxicity. This article reviews possible links between AD pathogenic factors such as AβPP/Aβ and tau; novel risk genes including clusterin, phosphatidylinositol-binding clathrin assembly protein, complement receptor 1, bridging integrator 1, ATP-binding cassette transporter 7, membrane-spanning 4-domains subfamily A, CD2-associated protein, sialic acid-binding immunoglobulin-like lectin, and ephrin receptor A1; metabolic changes including insulin resistance and hypercholesterolemia; lipid changes including alterations in brain phospholipids, cholesterol and ceramides; glial changes affecting microglia and astrocytes; alterations in brain iron metallome and oxidative stress; and slow excitotoxicity. Better understanding of the possible molecular links between pathogenic factors and slow excitotoxicity could inform our understanding of the disease, and pave the way towards new therapeutic strategies for AD.
PMID:
23481689
DOI:
10.3233/JAD-121990
PMID:
23481689
6.
Bouvier D, Tremblay ME, Riad M, Corera AT, Gingras D, Horn KE, Fotouhi M, Girard M, Murai KK, Kennedy TE, McPherson PS, Pasquale EB, Fon EA, Doucet G.
J Neurochem. 2010 Apr;113(1):153-65. doi: 10.1111/j.1471-4159.2010.06582.x. Epub 2010 Jan 12. Abstract
EphA4, a receptor tyrosine kinase, is expressed in various pre-, post- and peri-synaptic organelles and implicated in the regulation of morphological and physiological properties of synapses. It regulates synaptic plasticity by acting as a binding partner for glial ephrin-A3 and possibly other pre- or post-synaptic ephrins. Now, its trafficking mechanisms remain unknown. In this study, we examine the association of EphA4 with transport, clathrin-coated and synaptic vesicles using cell fractionation, vesicle immunoisolation and electron microscopy. EphA4 was found in highly purified fractions of clathrin-coated or synaptic vesicles. It was also detected in vesicles immuno-isolated with antibodies anti-synaptophysin, anti-vesicular glutamate transporter or anti-vesicular GABA transporter; demonstrating its presence in synaptic vesicles. However, it was not detected in immuno-isolated piccolo-bassoon transport vesicles. In vivo and in dissociated cultures, EphA4 was localized by immunoelectron microscopy in vesicular glutamate transporter 1-(GLUT-1)positive terminals of hippocampal neurons. Remarkably, the cell surface immunofluorescence of EphA4 increased markedly in cultured hippocampal neurons following KCl depolarization. These observations indicate that EphA4 is present in subsets of synapcltic vesies, can be externalized during depolarization, and internalized within clathrin-coated vesicles. This trafficking itinerary may serve to regulate the levels of EphA4 in the synaptic plasma membrane and thereby modulate signaling events that contribute to synaptic plasticity.
7.
Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T, Kullander K, Rose CR, Pasquale EB, Klein R.
Nat Neurosci. 2009 Oct;12(10):1285-92. doi: 10.1038/nn.2394. Epub 2009 Sep 6. Abstract
Astrocytes are critical participants in synapse development and function, but their role in synaptic plasticity is unclear. Eph receptors and their ephrin ligands have been suggested to regulate neuron-glia interactions, and EphA4-mediated ephrin reverse signaling is required for synaptic plasticity in the hippocampus. Here we show that long-term potentiation (LTP) at the CA3-CA1 synapse is modulated by EphA4 in the postsynaptic CA1 cell and by ephrin-A3, a ligand of EphA4 that is found in astrocytes. Lack of EphA4 increased the abundance of glial glutamate transporters (GLAST), and ephrin-A3 modulated transporter currents in astrocytes. Pharmacological inhibition of glial glutamate transporters rescued the LTP defects in EphA4 (Epha4) and ephrin-A3 (Efna3) mutant mice. Transgenic overexpression of ephrin-A3 in astrocytes reduces glutamate transporter levels and produces focal dendritic swellings possibly caused by glutamate excitotoxicity. These results suggest that EphA4/ephrin-A3 signaling is a critical mechanism for astrocytes to regulate synaptic function and plasticity.
8.
Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12524-9. doi: 10.1073/pnas.0903328106. Epub 2009 Jul 10.Increasing evidence indicates the importance of neuron-glia communication for synaptic function, but the mechanisms involved are not fully understood. We reported that the EphA4 receptor tyrosine kinase is in dendritic spines of pyramidal neurons of the adult hippocampus and regulates spine morphology. We now show that the ephrin-A3 ligand, which is located in the perisynaptic processes of astrocytes, is essential for maintaining EphA4 activation and normal spine morphology in vivo. Ephrin-A3-knockout mice have spine irregularities similar to those observed in EphA4-knockout mice. Remarkably, loss of ephrin-A3 or EphA4 increases the expression of glial glutamate transporters. Consistent with this, glutamate transport is elevated in ephrin-A3-null hippocampal slices whereas Eph-dependent stimulation of ephrin-A3 signaling inhibits glutamate transport. Furthermore, some forms of hippocampus-dependent learning are impaired in the ephrin-A3-knockout mice. Our results suggest that the interaction between neuronal EphA4 and glial ephrin-A3 bidirectionally controls synapse morphology and glial glutamate transport, ultimately regulating hippocampal function.
9.
Ogawa Y, Takebayashi H, Takahashi M, Osumi N, Iwasaki Y, Ikenaka K.
Dev Neurosci. 2005;27(6):364-77.
PMID:
16280634

Endogeenisen EPHB2 reseptorin stimulaatio vähentää tauproteiinifosforylaatiota (2015)

https://www.ncbi.nlm.nih.gov/pubmed/26119563

2015 Jun 29;5:11765. doi: 10.1038/srep11765.

Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β.

Abstract

Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer's disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand stimulation induces a remarkable tau dephosphorylation at multiple AD-associated sites in SK-N-SH cells and human embryonic kidney cells that stably express human tau (HEK293-tau). In cultured hippocampal neurons and the hippocampus of human tau transgenic mice, dephosphorylation of tau proteins was also detected by stimulation of EphB2 receptor. EphB2 activation inhibits glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase, and activates phosphatidylinositol-3-kinase (PI3K)/Akt both in vitro and in vivo, whereas simultaneous inhibition of PI3K or upregulation of GSK-3β abolishes the EphB2 stimulation-induced tau dephosphorylation. Finally, we confirm that ephrinB1/Fc treatment induces tyrosine phosphorylation (activation) of EphB2, while deletion of the tyrosine kinase domain (VM) of EphB2 eliminates the receptor stimulation-induced GSK-3β inhibition and tau dephosphorylation. We conclude that activation of EphB2 receptor kinase arrests tau hyperphosphorylation through PI3K-/Akt-mediated GSK-3β inhibition. Our data provide a novel membranous target to antagonize AD-like tau pathology.
PMID:
26119563
PMCID:
PMC4484244
DOI:
10.1038/srep11765
[Indexed for MEDLINE]
Free PMC Article