tisdag 29 oktober 2013
måndag 28 oktober 2013
D-penicillamiini
http://www.ncbi.nlm.nih.gov/pubmed/15661498
Koska D-penisillamiin voi estää kollageenin poikkisidosten muodostusta, sillä voisi olla merkitystä myös kelaattina Alz- taudissa estämässä hankalia fibrillimuodostumia. Löytyyhän tästä artikkelikin:
Eur J Pharm Biopharm. 2005 Feb;59(2):263-72. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases.
Koska D-penisillamiin voi estää kollageenin poikkisidosten muodostusta, sillä voisi olla merkitystä myös kelaattina Alz- taudissa estämässä hankalia fibrillimuodostumia. Löytyyhän tästä artikkelikin:
Eur J Pharm Biopharm. 2005 Feb;59(2):263-72. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases.
Source
Department of Pharmaceutical Sciences, Center for Pharmaceutical Science and Technology, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.Abstract
Metal ions accumulate in the brain with aging and in several neurodegenerative diseases. Aside from the copper storage disease, Wilson's disease, recent attention has focused on the accumulation of zinc, copper and iron in the Alzheimer's disease (AD) brain and the accumulation of iron in Parkinson's disease.
In particular, the parenchymal deposition of beta-amyloid (Abeta) and
its interaction with metal ions has been postulated to play a role in
the progression of AD. Thus, the strategy of lowering brain metal ions
and targeting the interaction of Abeta peptide and metal ions through
the administration of chelators has merit. Our recent finding that
nanoparticle delivery systems can cross the blood-brain barrier has led
us to investigate whether chelators delivered conjugated to
nanoparticles could act to reverse metal ion induced protein
precipitation. In the present studies, the Cu (I) chelator D-penicillamine
was covalently conjugated to nanoparticles via a disulfide bond or a
thioether bond. Nanoparticle-chelator conjugates were stable between pH
6-8 in aqueous suspension if stored at 4 degrees C, and did not
aggregate when challenged with salts and serum. Release of D-penicillamine
from the nanoparticles was achieved using reducing agents such as
dithiothreitol (as a model for glutathione). Nanoparticles treated only
under reducing conditions that released the conjugated D-penicillamine
were able to effectively resolubilize copper-Abeta (1-42) aggregates.
These results indicate that nanoparticles have potential to deliver D-penicillamine
to the brain for the prevention of Abeta (1-42) accumulation, as well
as to reduce metal ion accumulation in other CNS diseases.
söndag 27 oktober 2013
Fysostigmiini
http://en.wikipedia.org/wiki/Physostigmine
Kuten tiedetään kolinerginen järjestelmä toimii eräänlaisena hermo ratojen johtokyvyn perusauraajana siten että sen vaihtovirtamainen nopea asetylkoliini-- asetylkoliiniesteraasi- järjestelmä normaalina tuottaa ihmisen järkevää kognitiota ja hyvää suorituskykyä.
Jos tuo hyvä järkevyys halutaan täsmällisesti kolaroida pois- (kuitenkaan tappamatta väestöä kuten tavallisilla hermokaasuilla on tapana ), ja esim asetylkoliinin tehopitoisuutta vähennetään- niin vaikutus on typertävä, ihminen alkaa töppäillä, hypistellä, nyppiä ja esim. kiskoa vaatteitaan pois ja on toiminnaltaan deliriöösi, ajantajun kadottanut eikä erota vahvoista hallusinaatioistaan objektiivisia faktoja. - Sotilaille tuollainen töppöily olisi hyvin "incapasitating", toimintakyvyn tehon äkkikatkaisija. BZ kemiallinen ase kuten sen sukuinen Agentti 15 ovat sitä sorttia.Tämän vuoden alkupuolella huhuttiin että jotain Agentti 15 kaltaista olisi Syyriassakin olut, mutta ilmeisesti oli kyse pahempia tarkoittaneista aineista.
Tuollaisen töppöilyyn on fysostigmiini vastalääke . Sen yksi nimi onkin "Antilirium " ( anti -delirium) . Fysotigmiinillä on itsellään yliannostusoreensa, joten sen antorajat ovat kapeat. Fysostigmiini saa kohotettua asetylkoliinin vaikuttavaa pitoisuutta estämällä asetylkoliinia pilkkoutumasta.
NATO koodin BZ aineille fysostigmiini on aivan spesifinen vasta-aine. sillä BZ aineet ( asetylkoliinin kompetitiivisina estäjinä postsynaptisissa ja postjunktionaalisissa muskariinireseptorikohdissa sekä aivoissa) vähentävat asetylkoliinin efektiivistä pitoisuutta noissa reseptorikohdissa.
Fysostigmiinin vaikutus asetylkoliiniesteraasiin on reversibeli, ohimenevä, palautuva, ( kun taas organofosfaatti-hermokaasut lamaavat entsyymin pysyvästi). Fysostigmiini vahvistaa asetylkoliinin pitoisuutta sekä nikotiinireseptoreissa että muskariiniresptoreissa, joten se vaikuttaa aivoissakin lähimuistin ja lihasfunktioissa kyseessä olevan hetken tahdonalaisen toiminnan paranemaa.
Sitaatti Wikipediasta:
Because it is a tertiary amine (and thus does not hydrogen bond, making it more hydrophobic), it can cross the blood–brain barrier, and physostigmine salicylate is used to treat the central nervous system effects of atropine, scopolamine and other anticholinergic drug overdoses.
Physostigmine is the antidote of choice for Datura stramonium poisoning. It is also an antidote for Atropa belladonna poisoning, the same as for atropine.[4] It has been also used as an antidote for poisoning with GHB as well,[5] but is poorly effective and often causes additional toxicity, so is not a recommended treatment.[6]
Physostigmine also has a miotic function, causing pupillary constriction. It is useful in treating mydriasis. Physostigmine also increases outflow of the aqueous humor in the eye, making it useful in the treatment of glaucoma.
Recently, physostigmine has been proposed as antidote for intoxication with gamma hydroxybutyrate (GHB, a potent sedative-hypnotic agent that can cause loss of consciousness, loss of muscle control, and death). Physostigmine may treat GHB by producing a nonspecific state of arousal. However, there is not enough scientific evidence to prove physostigmine properly treats GHB toxicity.
Physostigmine also has other proposed uses: it could reverse undesired side effects of benzodiazepines such as diazepam, alleviating anxiety and tension. Another proposed use of physostigmine is to reverse the effects of barbiturates (any of a group of barbituric acids derived for use as sedatives or hypnotics).
Other side effects may include nausea, vomiting, diarrhea, anorexia, dizziness, headache, stomach pain, sweating, dyspepsia and seizures.[7]
Kuten tiedetään kolinerginen järjestelmä toimii eräänlaisena hermo ratojen johtokyvyn perusauraajana siten että sen vaihtovirtamainen nopea asetylkoliini-- asetylkoliiniesteraasi- järjestelmä normaalina tuottaa ihmisen järkevää kognitiota ja hyvää suorituskykyä.
Jos tuo hyvä järkevyys halutaan täsmällisesti kolaroida pois- (kuitenkaan tappamatta väestöä kuten tavallisilla hermokaasuilla on tapana ), ja esim asetylkoliinin tehopitoisuutta vähennetään- niin vaikutus on typertävä, ihminen alkaa töppäillä, hypistellä, nyppiä ja esim. kiskoa vaatteitaan pois ja on toiminnaltaan deliriöösi, ajantajun kadottanut eikä erota vahvoista hallusinaatioistaan objektiivisia faktoja. - Sotilaille tuollainen töppöily olisi hyvin "incapasitating", toimintakyvyn tehon äkkikatkaisija. BZ kemiallinen ase kuten sen sukuinen Agentti 15 ovat sitä sorttia.Tämän vuoden alkupuolella huhuttiin että jotain Agentti 15 kaltaista olisi Syyriassakin olut, mutta ilmeisesti oli kyse pahempia tarkoittaneista aineista.
Tuollaisen töppöilyyn on fysostigmiini vastalääke . Sen yksi nimi onkin "Antilirium " ( anti -delirium) . Fysotigmiinillä on itsellään yliannostusoreensa, joten sen antorajat ovat kapeat. Fysostigmiini saa kohotettua asetylkoliinin vaikuttavaa pitoisuutta estämällä asetylkoliinia pilkkoutumasta.
NATO koodin BZ aineille fysostigmiini on aivan spesifinen vasta-aine. sillä BZ aineet ( asetylkoliinin kompetitiivisina estäjinä postsynaptisissa ja postjunktionaalisissa muskariinireseptorikohdissa sekä aivoissa) vähentävat asetylkoliinin efektiivistä pitoisuutta noissa reseptorikohdissa.
Fysostigmiinin vaikutus asetylkoliiniesteraasiin on reversibeli, ohimenevä, palautuva, ( kun taas organofosfaatti-hermokaasut lamaavat entsyymin pysyvästi). Fysostigmiini vahvistaa asetylkoliinin pitoisuutta sekä nikotiinireseptoreissa että muskariiniresptoreissa, joten se vaikuttaa aivoissakin lähimuistin ja lihasfunktioissa kyseessä olevan hetken tahdonalaisen toiminnan paranemaa.
Sitaatti Wikipediasta:
Clinical uses
Physostigmine is used to treat glaucoma, Alzheimer's disease and delayed gastric emptying. It has been shown to improve short term memory (Krus et al. 1968). Recently, it has begun to be used in the treatment of orthostatic hypotension.Because it is a tertiary amine (and thus does not hydrogen bond, making it more hydrophobic), it can cross the blood–brain barrier, and physostigmine salicylate is used to treat the central nervous system effects of atropine, scopolamine and other anticholinergic drug overdoses.
Physostigmine is the antidote of choice for Datura stramonium poisoning. It is also an antidote for Atropa belladonna poisoning, the same as for atropine.[4] It has been also used as an antidote for poisoning with GHB as well,[5] but is poorly effective and often causes additional toxicity, so is not a recommended treatment.[6]
Bioactivity
Physostigmine functions as an acetylcholinesterase inhibitor. Its mechanism is to prevent the hydrolysis of acetylcholine by acetylcholinesterase at the transmitted sites of acetylcholine. This inhibition enhances the effect of acetylcholine, making it useful for the treatment of cholinergic disorders and myasthenia gravis. More recently, physostigmine has been used to improve the memory of Alzheimer’s patients due to its potent anticholinesterase activity. However, the drug form of physostigmine, physostigmine salicylate, has poor bioavailability.Physostigmine also has a miotic function, causing pupillary constriction. It is useful in treating mydriasis. Physostigmine also increases outflow of the aqueous humor in the eye, making it useful in the treatment of glaucoma.
Recently, physostigmine has been proposed as antidote for intoxication with gamma hydroxybutyrate (GHB, a potent sedative-hypnotic agent that can cause loss of consciousness, loss of muscle control, and death). Physostigmine may treat GHB by producing a nonspecific state of arousal. However, there is not enough scientific evidence to prove physostigmine properly treats GHB toxicity.
Physostigmine also has other proposed uses: it could reverse undesired side effects of benzodiazepines such as diazepam, alleviating anxiety and tension. Another proposed use of physostigmine is to reverse the effects of barbiturates (any of a group of barbituric acids derived for use as sedatives or hypnotics).
Side effects
An overdose can cause cholinergic syndrome.Other side effects may include nausea, vomiting, diarrhea, anorexia, dizziness, headache, stomach pain, sweating, dyspepsia and seizures.[7]
Metyltioniini tutkimuksissa
http://en.wikipedia.org/wiki/Methylthioninium_chloride
Metyltioniini eli metyleenisini on redusoiva ( pelkistävä) aine, jota käytetään terapeuttisesti joissain methemoglobinemiamuodoissa palauttamassa hemoglobiinin Ferrirautaa Hb-Fe+++ ferro-muotoon Hb-Fe++.
On havaittu että metyleenisini toimii myös Tau-proteiinin aggrekaation estäjänä, jolloin se on kiinnostava aine mahdollisena Alzheimerin taudin lääkekirjoon kuuluvana uutena jäsenenä. Mahdollista edullista vaikutusta sillä lie myös Parkinsonin tautiin. Asiaa tutkitaan.
SITAATTI Wikipediasta:
Methylthioninium chloride (INN, or methylene blue, proposed trade name Rember) is an investigational drug being developed by the University of Aberdeen and TauRx Therapeutics that has been shown in early clinical trials to be an inhibitor of Tau protein aggregation.[1][2] The drug is of potential interest for the treatment of patients with Alzheimer's disease. Its development appears to be related to claim 7 of US 6953794
Inhibition of Tau-Tau Association. TauRx Therapeutics has suggested
that the mechanism by which methylene blue might delay or reverse
neurodegeneration in Alzheimer's disease is as an inhibitor of Tau
protein aggregation. While methylene blue arguably has an effect on Tau
aggregation, it also has an effect on mitochondrial function which is
likely to play an important role. In vitro studies suggest that methylene blue might be an effective remedy for both Alzheimer's and Parkinson's disease by enhancing key mitochondrial biochemical pathways. It can disinhibit and increase complex IV, whose inhibition correlates with Alzheimer's disease. [3]
...
Metyltioniini eli metyleenisini on redusoiva ( pelkistävä) aine, jota käytetään terapeuttisesti joissain methemoglobinemiamuodoissa palauttamassa hemoglobiinin Ferrirautaa Hb-Fe+++ ferro-muotoon Hb-Fe++.
On havaittu että metyleenisini toimii myös Tau-proteiinin aggrekaation estäjänä, jolloin se on kiinnostava aine mahdollisena Alzheimerin taudin lääkekirjoon kuuluvana uutena jäsenenä. Mahdollista edullista vaikutusta sillä lie myös Parkinsonin tautiin. Asiaa tutkitaan.
SITAATTI Wikipediasta:
Methylthioninium chloride
For other uses of the chemical compound methylthioninium chloride, see Methylene blue.
Systematic (IUPAC) name | |
---|---|
3,7-bis(Dimethylamino)-phenothiazin-5-ium chloride | |
Clinical data | |
Pregnancy cat. | ? |
Legal status | investigational |
Routes | oral |
Identifiers | |
CAS number | 61-73-4 |
ATC code | None |
PubChem | CID 6099 |
ChemSpider | 5874 |
ChEBI | CHEBI:6872 |
ChEMBL | CHEMBL405110 |
Chemical data | |
Formula | C16H18ClN3S |
Mol. mass | 319.85 g/mol |
|
...
torsdag 10 oktober 2013
AlJazeera kertoo eurooppalaisesta aivotutkimuksesta
http://www.aljazeera.com/news/europe/2013/10/scientists-closer-alzheimer-cure-201310109325971124.html
Tässä aivokuvassa näkyy AD taudissa myelinisoidun valkean aineksen kato.
Tässä aivokuvassa näkyy AD taudissa myelinisoidun valkean aineksen kato.
onsdag 2 oktober 2013
Astrosyytin osuudesta aivohalvauksessa ,aivojen plastisuudessa ja neurogeneesissä. Uusi väitöskirja 2013
https://gupea.ub.gu.se/handle/2077/32390
Keywords: | astrocytes reactive gliosis stroke neurotrauma brain plasticity intermediate filaments nanofilaments GFAP vimentin neurogenesis neural stem/progenitor cell single-cell gene expression profiling | ||
Abstract: | Astrocytes, one of the most abundant and heterogeneous cell types in the central nervous system, fulfill many important roles in the healthy and injured brain. This thesis investigates the role of astrocytes in the neurogenic niche and the astrocyte response in stroke and neurotrauma. Using gene expression profiling on a global level as well as on a single-cell level and applying it to disease and transgenic models in vivo and in vitro, we have addressed molecular bases of these responses and molecular signatures of the subpopulations of astrocytes. Following injury, stroke or neurodegenerative diseases, astrocytes upregulate intermediate filament (nanofilament) proteins glial fibrillary acidic protein and vimentin along with many other genes, in a process referred to as reactive gliosis. Results presented in this thesis show that mice with attenuated reactive gliosis developed larger infarct volumes following experimental brain ischemia, compared to controls, implying that reactive gliosis is neuroprotective. Using astrocyte and neurosphere co-cultures, we show that astrocytes inhibit neuronal differentiation through cell-cell contact via the Notch signaling pathway and that intermediate filaments are involved in this process. We found that even a very limited focal trauma triggers a distinct brain plasticity response both in the injured and contralesional hemisphere and that this response at least partly depends on activation of astrocytes. Finally, using single-cell gene expression profiling in vitro and in vivo, we show that the astrocyte population is highly heterogeneous, we attempt to define astrocyte subpopulations in molecular terms, and we demonstrate that astrocyte subpopulations respond differentially to a subtle neurotrauma both in the injured and contralesional hemisphere. |
onsdag 20 mars 2013
Aivoselkäydinneste (1)
Aineistoa suomennettavaksi:
1) 2007
1) 2007
Pflugers Arch. 2007 Apr;454(1):1-18. Epub 2006 Nov 21.
Water and solute secretion by the choroid plexus.
Source
The Water and Salt Research Center & Institute of Anatomy, University of Aarhus, Wilhelm Meyers Allé, 8000 Aarhus, Denmark. jp@ana.au.dkAbstract
The cerebrospinal fluid
(CSF) provides mechanical and chemical protection of the brain and
spinal cord. This review focusses on the contribution of the choroid
plexus epithelium to the water and salt homeostasis of the CSF, i.e. the
secretory processes involved in CSF formation. The choroid plexus
epithelium is situated in the ventricular system and is believed to be
the major site of CSF production. Numerous studies have identified
transport processes involved in this secretion, and recently, the
underlying molecular background for some of the mechanisms have emerged.
The nascent CSF consists mainly of NaCl and NaHCO(3), and the
production rate is strictly coupled to the rate of Na(+) secretion. In
contrast to other secreting epithelia, Na(+) is actively pumped across
the luminal surface by the Na(+),K(+)-ATPase with possible contributions
by other Na(+) transporters, e.g. the luminal Na(+),K(+),2Cl(-)
cotransporter. The Cl(-) and HCO(3) (-) ions are likely transported by a
luminal cAMP activated inward rectified anion conductance, although the
responsible proteins have not been identified. Whereas Cl(-) most
likely enters the cells through anion exchange, the functional as well
as the molecular basis for the basolateral Na(+) entry are not yet
well-defined. Water molecules follow across the epithelium mainly
through the water channel, AQP1, driven by the created ionic gradient.
In this article, the implications of the recent findings for the current
model of CSF secretion are discussed. Finally, the clinical
implications and the prospects of future advances in understanding CSF
production are briefly outlined.
(2) 2001
(2) 2001
Microsc Res Tech. 2001 Jan 1;52(1):49-59.
Mechanisms of CSF secretion by the choroid plexus.
Source
School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.Abstract
The epithelial cells of the choroid plexus secrete cerebrospinal fluid
(CSF), by a process that involves the movement of Na(+), Cl(-) and
HCO(3)(-) from the blood to the ventricles of the brain. This creates
the osmotic gradient, which drives the secretion of H(2)O. The
unidirectional movement of the ions is achieved due to the polarity of
the epithelium, i.e., the ion transport proteins in the blood-facing
(basolateral) are different to those in the ventricular (apical)
membranes. Saito and Wright (1983) proposed a model for secretion by the
amphibian choroid plexus, in which secretion was dependent on activity
of HCO(3)(-) channels in the apical membrane. The patch clamp method has
now been used to study the ion channels expressed in rat choroid
plexus. Two potassium channels have been observed that have a role in
maintaining the membrane potential of the epithelial cell, and in
regulating the transport of K(+) across the epithelium. An
inward-rectifying anion channel has also been identified, which is
closely related to ClC-2 channels, and has a significant HCO(3)(-)
permeability. This channel is expressed in the apical membrane of the
epithelium where it may play an important role in CSF secretion. A model
of CSF secretion by the mammalian choroid plexus is proposed that
accommodates these channels and other data on the expression of
transport proteins in the choroid plexus.
Copyright 2001 Wiley-Liss, Inc.
(2) 2009 Kloridin jakautumahäiriö aivoautonomian alueella.
Copyright 2001 Wiley-Liss, Inc.
(2) 2009 Kloridin jakautumahäiriö aivoautonomian alueella.
J Neurol Sci. 2009 Oct 15;285(1-2):146-8. doi: 10.1016/j.jns.2009.06.026. Epub 2009 Jul 12.
Decreased chloride levels of cerebrospinal fluid in patients with amyotrophic lateral sclerosis.
Watanabe S, Kimura T, Suenaga K, Wada S, Tsuda K, Kasama S, Takaoka T, Kajiyama K, Takeda M, Yoshikawa H.
Source
Department of Internal Medicine, Division of Neurology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan. watasho@hyo-med.ac.jpAbstract
Recent
studies have suggested that the elevation of intracellular chloride
contributes to excitotoxic cell death in motor neuron and can be related
to the pathogenesis of amyotrophic lateral sclerosis (ALS). We
investigated whether chloride levels in cerebrospinal fluid
(CSF) and serum were lower in ALS patients than in control patients
with other neurological diseases (OND). We also examined the
relationship between chloride levels and clinical ALS phenotypes. We
measured chloride levels (CSF and serum) in 27 ALS patients and 33 age-
and gender-matched OND controls admitted to our hospital for diagnosis.
The CSF chloride levels were lower in ALS patients (117 [range 102-130]
mmol/L) than in OND controls (126 [range 114-134] mmol/L) . There was no significant difference in CSF chloride
levels among the sub-groups of ALS patients classified according to
their age, gender, duration of illness, clinical state and type of onset
(P>0.05). CSF chloride levels already significantly decreased in ALS
patients at the time of diagnosis. We conclude that the elevation of
intracellular chloride would cause the reduction of chloride in CSF and
be related to the pathogenesis of ALS.
Koko veri 250 mg 100 millissä
Plasma tai seerum 365 mg 100 millissä.
Solut 190 mg 100 millissä
Aivoselkäydinneste 440 mg 100 millissä
Lihaskudos 40 mg 100 millissä
Hermokudos 171 mg 100 millissä.
Kloridin tarvpeen määritelyssä varman tuo likvorin pitoisuus on merkitsevä seikka. Tosin siinä on indiffusible - momentti, aivo retentoi kloridia tuohon aivotyynyosaan, likvoriin.
likvori taas vaihtuu aika nopeasti useita kertoja päivässä. Miten siinä resoptiovaiheessa koridi toimii? Ei ainakaan pyri suuremmalti erittymään poispäin.
- (4) 1969 Aivoselkäydinnesteen kloridipitoisuus on korkeampi kuin muissa kehon nesteissä
Koko veri 250 mg 100 millissä
Plasma tai seerum 365 mg 100 millissä.
Solut 190 mg 100 millissä
Aivoselkäydinneste 440 mg 100 millissä
Lihaskudos 40 mg 100 millissä
Hermokudos 171 mg 100 millissä.
Kloridin tarvpeen määritelyssä varman tuo likvorin pitoisuus on merkitsevä seikka. Tosin siinä on indiffusible - momentti, aivo retentoi kloridia tuohon aivotyynyosaan, likvoriin.
likvori taas vaihtuu aika nopeasti useita kertoja päivässä. Miten siinä resoptiovaiheessa koridi toimii? Ei ainakaan pyri suuremmalti erittymään poispäin.
Prenumerera på:
Inlägg (Atom)