Leta i den här bloggen

Visar inlägg med etikett Tryptofaani. Visa alla inlägg
Visar inlägg med etikett Tryptofaani. Visa alla inlägg

måndag 23 maj 2016

Tryptofaanista kynureenihappo-risteykseen, entä stten?

http://www.ncbi.nlm.nih.gov/pubmed/27130315

J Headache Pain. 2015 Dec;17(1):47. doi: 10.1186/s10194-016-0638-5. Epub 2016 Apr 29.

Altered kynurenine pathway metabolites in serum of chronic migraine patients.

Abstract

BACKGROUND:

Activation of glutamate (Glu) receptors plays a key role in the pathophysiology of migraine. Both NMDA and metabotropic Glu receptors are activated or inhibited by metabolites of the kynurenine pathway, such as kynureninic acid (KYNA), quinolinic acid (QUINA), and xanthurenic acid (XA). In spite of the extensive research carried out on KYNA and other kynurenine metabolites in experimental models of migraine, no studies have ever been carried out in humans. Here, we measured all metabolites of the kynurenine pathway in the serum of patients affected by chronic migraine (CM) and age- and gender-matched healthy controls.

METHODS:

We assessed serum levels of tryptophan (Trp), L-kynurenine (KYN), KYNA, anthranilic acid (ANA), 3-hydroxyanthranilic acid (3-HANA), 3-hydroxykynirenine (3-HK), XA, QUINA, and 5-hydroxyindolacetic acid (5-HIAA) in 119 patients affected by CM (ICHD-3beta criteria) and 84 age-matched healthy subjects. Patients with psychiatric co-morbidities, systemic inflammatory, endocrine or neurological disorders, and mental retardation were excluded. Serum levels of all metabolites were assayed using liquid chromatography/tandem mass spectrometry (LC-MS/MS).

RESULTS:

LC-MS/MS analysis of kynurenine metabolites showed significant reductions in the levels of KYN (-32 %), KYNA (-25 %), 3-HK (-49 %), 3-HANA (-63 %), 5-HIAA (-36 %) and QUINA (-80 %) in the serum of the CM patients, as compared to healthy controls. Conversely, levels of Trp, ANA and XA were significantly increased in CM patients (+5 %, +339 % and +28 %, respectively).

CONCLUSIONS:

These findings suggest that in migraine KYN is unidirectionally metabolized into ANA (anthranilte) at expenses of KYNA and 3-HK. The reduction in the levels of KYNA, which behaves as a competitive antagonist of the glycine site of NMDA receptors, is consistent with the hypothesis that NMDA receptors are overactive in migraine. The increase in XA, a putative activator of Glu2 receptors, may represent a compensatory event aimed at reinforcing endogenous analgesic mechanisms. The large increase in the levels of ANA encourages research aimed at establishing whether ANA has any role in the regulation of nociceptive transmission.

KEYWORDS:

Chronic migraine; Glutamate; Kynurenine; Metabotropic Glu receptors; NMDA receptors; Pain

måndag 23 mars 2015

5HT, tryptofaani, serotonerginen neuroni ja dieetti

LÄHDE:  Neurochem Int. 2013 Feb;62(3):324-9. doi: 10.1016/j.neuint.2012.12.014. Epub 2013 Jan 7.

Effect of diet on serotonergic neurotransmission in depression.  Shabbir F1, Patel A, Mattison C, Bose S, Krishnamohan R, Sweeney E, Sandhu S, Nel W, Rais A, Sandhu R, Ngu N, Sharma S.

Abstract

Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B(6). Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B(6) to boost serotonergic neurotransmission in depression observed in various neurodegenerative diseases. However pharmacological interventions to modulate serotonergic neurotransmission in depression, remains clinically significant. Depression may involve several other molecular mechanisms as discussed briefly in this report.