See Gene information for nmdar psd95
nmdar in Mus musculus (2)Drosophila melanogaster (2)All 4 Gene records
psd95 in Homo sapiensMus musculus (2)Rattus norvegicusAll 5 Gene records
psd95 in Homo sapiensMus musculus (2)Rattus norvegicusAll 5 Gene records
See also: 2 tests for PSD95 in the Genetic Testing Registry
Search results
Items: 1 to 20 of 563
1.
Xie J, Jusuf PR, Bui BV, Goodbourn PT.
Sci Rep. 2019 Dec 12;9(1):18931. doi: 10.1038/s41598-019-54958-6.
- PMID:
- 31831839
2.
Murciano-Calles J, Coello A, Cámara-Artigas A, Martinez JC.
J Mol Recognit. 2019 Nov 19:e2826. doi: 10.1002/jmr.2826. [Epub ahead of print]
3.
Franchini
L, Stanic J, Ponzoni L, Mellone M, Carrano N, Musardo S, Zianni E,
Olivero G, Marcello E, Pittaluga A, Sala M, Bellone C, Racca C, Di Luca
M, Gardoni F.
iScience. 2019 Sep 27;19:927-939. doi: 10.1016/j.isci.2019.08.036. Epub 2019 Aug 27.
- PMID:
- 31518901
4.
Del
Arroyo AG, Hadjihambi A, Sanchez J, Turovsky E, Kasymov V, Cain D,
Nightingale TD, Lambden S, Grant SGN, Gourine AV, Ackland GL.
EBioMedicine. 2019 Sep;47:457-469. doi: 10.1016/j.ebiom.2019.08.004. Epub 2019 Aug 8.
5.
Bowers MS, Cacheaux LP, Sahu SU, Schmidt ME, Sennello JA, Leaderbrand K, Khan MA, Kroes RA, Moskal JR.
J Neurochem. 2019 Aug 3. doi: 10.1111/jnc.14845. [Epub ahead of print]
- PMID:
- 31376158
6.
Warming
H, Pegasiou CM, Pitera AP, Kariis H, Houghton SD, Kurbatskaya K, Ahmed
A, Grundy P, Vajramani G, Bulters D, Altafaj X, Deinhardt K,
Vargas-Caballero M.
Mol Brain. 2019 Jul 4;12(1):64. doi: 10.1186/s13041-019-0485-9.
Introduction
NMDA receptors are activated by coincident glutamate binding and intracellular depolarisation. Ca2+
entry via NMDARs can gate long-term biochemical and gene expression
changes that alter synaptic strength, which are proposed as central to
mechanisms of memory storage [17] and neurodegenerative processes [9].
Our current knowledge of NMDAR function is largely derived from the
study of rodent receptors and heterologous expression of cloned rodent
genes. Tetrameric NMDARs comprise two obligatory GluN1 subunits and two
GluN2 or GluN3 subunits, and in the adult forebrain GluN1/GluN2A,
GluN1/GluN2B diheteromers, and GluN1/GluN2A/GluN2B triheteromers are the
most common [18, 19].
The subunit combination confers the distinct biophysical and
pharmacological properties to the receptor channel. The developmentally
and anatomically regulated gene expression of NMDAR subunits, together
with diverse post-translational modification mechanisms and protein
interactions, determines the assembly, trafficking, synaptic or
extrasynaptic localisation and internalisation of NMDARs (Reviewed in [16]) and their correct functioning is necessary for human brain functions [5, 6, 21].Homologous rodent and human NMDARs do share highly conserved subunit sequences and exhibit almost identical pharmacological properties [10]. However, large scale open reading frame studies performed with mRNA from a mix of human tissues [20, 28] have suggested that in addition to the conserved NMDAR canonical isoform of GluN2A in chordates, a shorter isoform is produced in humans (GluN2A-S) generated by alternative splicing of human GRIN2A (Fig. 1a). Here, we show that this alternative NMDAR isoform is expressed in the human and primate brain, and that it forms functional receptors together with the obligatory subunit GluN1 [15]. The presence of alternative NMDAR subunits not expressed in rodent model systems indicates the existence of unexplored neural mechanisms in human synapses with relevance to normal function, ageing and neurological disease....
Here we describe for the first time the brain expression of an uncharacterised, primate-specific NMDAR subunit. The splice site for GluN2A-S suggests that it will contain a diverging 19 aa sequence in its extreme C-terminal domain (Fig. 2a), in addition to lacking the distal carboxy terminal domain (183 amino acids) that contains PKC/SFK phosphorylation sites, two PDZ binding motifs that allow synaptic localisation [4, 12, 14], and a dileucin clathrin adaptor motif involved in receptor internalisation [13]. Following many lines of published evidence, these differences suggest that the dynamic regulation of GluN2A-S in response to stimuli could diverge from GluN2A subunit-containing NMDARs. This could impact the number of receptors present synaptically or extrasynaptically, the insertion of new receptors into the membrane, their lateral diffusion and clustering into synapses and their active removal. The potential changes in human synapses compared to mouse neurons void of GluN2A-S could result in distinct mechanisms involved in activity-dependent plasticity of synapses, which will highly depend upon its triheteromeric partners [1, 8, 19].
...Together, our data suggest that GluN2A-S is a primate-specific NMDAR subunit and a substantial component of functional NMDARs in the adult human brain. Many neuronal mechanisms discovered in mice have been successfully recapitulated in humans. However, mounting evidence suggests that there are important differences between rodent and human neurons that result in distinct signal integration properties [22, 23, 26] and proteomic composition of synapses [3]. Species differences may ultimately impact the way in which human neural circuits can be computationally modelled [7], and the translation of pre-clinical findings into approved therapies [24]. Further analyses of GluN2A-S spatio-temporal gene expression and synaptic/ extrasynaptic localisation will enhance our knowledge of their functional role and may uncover NMDAR trafficking mechanisms present only in primates and diverging sequences may uncover novel therapeutic targets.
Free PMC Article
Similar articles
- 4. Ref.Cousins SL, Kenny AV, Stephenson FA. Delineation of additional PSD-95 binding domains within NMDA receptor NR2 subunits reveals differences between NR2A/PSD-95 and NR2B/PSD-95 association. Neuroscience. 2009;158:89–95.
7.
Coley AA, Gao WJ.
Sci Rep. 2019 Jul 1;9(1):9486. doi: 10.1038/s41598-019-45971-w.
- PMID:
- 31263190
8.
Luo P, Li X, Wu X, Dai S, Yang Y, Xu H, Jing D, Rao W, Xu H, Gao X, Fei Z, Lu H.
Cell Death Dis. 2019 Jun 24;10(7):496. doi: 10.1038/s41419-019-1731-x.
- PMID:
- 31235685
9.
Levy NS, Umanah GKE, Rogers EJ, Jada R, Lache O, Levy AP.
Int J Mol Sci. 2019 Jun 21;20(12). pii: E3038. doi: 10.3390/ijms20123038. Review.
- PMID:
- 31234416
10.
Lee H, Shin W, Kim K, Lee S, Lee EJ, Kim J, Kweon H, Lee E, Park H, Kang M, Yang E, Kim H, Kim E.
PLoS Biol. 2019 Jun 5;17(6):e2005326. doi: 10.1371/journal.pbio.2005326. eCollection 2019 Jun.
- PMID:
- 31166939
11.
Wang H, Zhao P, Huang Q, Chi Y, Dong S, Fan J.
Chemosphere. 2019 Aug;229:618-630. doi: 10.1016/j.chemosphere.2019.04.099. Epub 2019 Apr 15.
- PMID:
- 31102917
12.
Ştefănescu R, Stanciu GD, Luca A, Caba IC, Tamba BI, Mihai CT.
Molecules. 2019 Mar 24;24(6). pii: E1167. doi: 10.3390/molecules24061167. Review.
- PMID:
- 30909659
13.
Amedonu
E, Brenker C, Barman S, Schreiber JA, Becker S, Peischard S,
Strutz-Seebohm N, Strippel C, Dik A, Hartung HP, Budde T, Wiendl H,
Strünker T, Wünsch B, Goebels N, Meuth SG, Seebohm G, Melzer N.
Front Neurol. 2019 Mar 1;10:178. doi: 10.3389/fneur.2019.00178. eCollection 2019.
- PMID:
- 30881339
14.
Matt L, Kim K, Chowdhury D, Hell JW.
Front Mol Neurosci. 2019 Jan 31;12:8. doi: 10.3389/fnmol.2019.00008. eCollection 2019. Review.
15.
Patel MV, Sewell E, Dickson S, Kim H, Meaney DF, Firestein BL.
J Neurotrauma. 2019 Jul 1;36(13):2129-2138. doi: 10.1089/neu.2018.6291. Epub 2019 Mar 28.
- PMID:
- 30747034
16.
Zamzow DR, Elias V, Acosta VA, Escobedo E, Magnusson KR.
eNeuro. 2019 Feb 7;6(1). pii: ENEURO.0310-18.2019. doi: 10.1523/ENEURO.0310-18.2019. eCollection 2019 Jan-Feb.
17.
Ben Mimouna S, Le Charpentier T, Lebon S, Van Steenwinckel J, Messaoudi I, Gressens P.
J Cell Physiol. 2019 Feb 4. doi: 10.1002/jcp.28245. [Epub ahead of print]
18.
Diaz A, Jeanneret V, Merino P, McCann P, Yepes M.
J Cell Sci. 2019 Feb 28;132(5). pii: jcs224196. doi: 10.1242/jcs.224196.
19.
Linnoila J, Pulli B, Armangué T, Planagumà J, Narsimhan R, Schob S, Zeller MWG, Dalmau J, Chen J.
Neurol Neuroimmunol Neuroinflamm. 2018 Dec 26;6(2):e529. doi: 10.1212/NXI.0000000000000529. eCollection 2019 Mar.
- PMID:
- 30697582
20.
Montalban E, Al-Massadi O, Sancho-Balsells A, Brito V, de Pins B, Alberch J, Ginés S, Girault JA, Giralt A.
Transl Psychiatry. 2019 Jan 15;9(1):3. doi: 10.1038/s41398-018-0352-y.
- PMID:
- 30664624
Inga kommentarer:
Skicka en kommentar